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Abstract 
 

This study is to identify whether the wind turbine blades are in good or faulty conditions. If faulty, then the objective to find which fault 

condition are the blades subjected to. The problem identification is carried out by machine learning approach using vibration signals 

through statistical features. In this study, a three bladed wind turbine was chosen and faults like blade cracks, hub-blade loose connection, 

blade bend, pitch angle twist and blade erosion were considered. Here, the study is carried out in three phases namely, feature extraction, 

feature selection and feature classification. In phase 1, the required statistical features are extracted from the vibration signals which ob-

tained from the wind turbine through accelerometer. In phase 2, the most dominating or the relevant feature is selected from the extracted 

features using J48 decision tree algorithm. In phase 3, the selected features are classified using machine learning classifiers namely, K-

star (KS), locally weighted learning (LWL), nearest neighbour (NN), k-nearest neighbours (kNN), instance based K-nearest using log 

and Gaussian weight kernels (IBKLG) and lazy Bayesian rules classifier (LBRC). The results were compared with respect to the classifi-

cation accuracy and the computational time of the classifier. 
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1. Introduction 

Greenhouse gasses free power generation, rapid establishment and 

charging ability, low process and preservation cost and exploiting 

utilizing free and renewable energies are all focal points of utiliz-

ing wind turbines as a power generators. Alongside with these 

favorable circumstances, the fundamental hindrance of this pro-

duction is the momentary wind stream. In this manner, utilizing 

dependable and productive equipment is essential to get as much 

as energy from the wind in the course of constrained timeframe 

that it streams emphatically. “The blade is the most significant 

segment in a wind turbine which currently composed by an ad-

vanced aero-dynamic science with a specific end goal to seize the 

maximum energy from the wind stream. Blades of horizontal axis 

are presently made-up of composite materials. Composite materi-

als fulfill complex strategy requirements like, light weight and 

suitable stiffness, while giving great imperviousness to the static 

and cyclic loading [1]. 

Due to different natural circumstances, the wind turbine gets 

faulty particularly in blades. These blades are the key segment for 

the energy mining from the wind. To find the faults on wind tur-

bine blades, the turbine has to shut-down and physical inspection 

has to be carried out. This will create a huge loss in energy pro-

duction and need to spend high labour charges. If the blade dam-

age is large, then it will create the catastrophic damage to the envi-

ronment and may also damage the entire turbine structure. So to 

reduce the loss of productivity and labor expenditure, condition 

monitoring is preferred to find the damage while the turbine is in 

operating condition [2].” 

Various studies were carried out on wind turbine blade condition 

to name a few, Kusiak and Verma [3] carried out work on a data-

driven approach for monitoring blade pitch faults in wind turbines 

using SCADA data. “This study considered two blade pitch faults 

namely; blade angle asymmetry and blade angle implausibility and 

it determine the associations between them. This study was carried 

out using bagging, artificial neural network (ANN), pruning rule-

based classification tree (PART), K-nearest neighbor (K-NN) and 

genetic programming (GP) algorithms. The classification accuracy 

of the algorithms for identifying the pitch fault on wind turbine 

blade was found to be GP-74.7%, Bagging-72.5%, PART-75.5%, 

ANN-76.2%, K-NN-73.5%. 

Abouhnik and Albarbar [4] simulated crack in wind turbine blades 

and carried out the crack location prediction study using vibration 

measurements and the level of an empirical decomposed feature 

intensity level (EDFIL). The main drawback in empirical decom-

posed feature intensity level is that it very poor in performance 

and fault detection and moreover crack fault detection was consid-

ered and other fault parameters were neglected. Godwin and Mat-

thews [5] carried out a study on classification and detection of 

wind turbine pitch faults through SCADA data and classified us-

ing RIPPER algorithm. The classification accuracy for the pitch 

fault was found to be 87.05%.” 

http://creativecommons.org/licenses/by/3.0/
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A study on wavelet transform based stress and time history editing 

of horizontal axis wind turbine blades was carried out by Pra-

tumnopharat et al., [6]. “With wavelet transform, this method 

extracts fatigue damage parts from the stress-time history and 

generates the edited stress-time history with the shorter time 

length. This study uses time correlated fatigue damage (TCFD), 

mexican hat wavelet (Mexh), meyer wavelet (Meyr), daubechies 

30th order (DB30), morlet wavelet (Morl), discrete meyer wavelet 

(Dmey) for the classification of crack on the blade. Here blade 

crack analysis was carried out. Johnson et al., [7] carried out a 

structural design of spars for 100m biplane wind turbine blades by 

beam finite elements with a cross sectional analysis. This paper 

mainly focuses on the wind turbine blade design. 

Damir et al., [8] carried out a study on numerical models for ro-

bust shape optimization of wind turbine blades using 3D geomet-

ric modeller. In this study, a computational framework for the 

shape optimization of wind turbine blade was developed for varia-

ble operating conditions specified by local wind speed distribu-

tions. This study focused on the blade design using simulation 

process and fault parameters which affects the performance of the 

wind turbine was not considered. A classification of operating 

conditions of wind turbines for a class-wise condition monitoring 

strategy study was done by Jong et al., [9]. This paper presents a 

general method that can be used to classify the operating condi-

tions of wind turbine in terms of rotor speed and power. This 

study used empirical probability density functions based method 

and Gaussian mixture model (GMM) based method. This paper 

presents performance evaluation of the proposed class-wise condi-

tion monitoring strategy using vibration signals.” 

Numerous works were carried out using simulation analysis; how-

ever only few experimental analyses were performed for wind 

turbine blade condition monitoring. “Machine learning technique 

was considered for wind turbine blade fault diagnosis; however, 

the usage was limited in literature [10]. A very limited set of de-

fects were considered for analysis. This is especially true in case 

of fault diagnosis of wind turbine blade. This study makes an at-

tempt to find 5 (five) different blade fault conditions by applying 

machine learning approach and statistical analysis. Fig. 1 shows 

the methodology of the work done. The contribution of the present 

study,  

 This study considers five faults (blade crack, erosion, hub-blade 

loose connection, pitch angle twist and blade bend) for wind 

turbine blade fault diagnosis. 

 Statistical feature extraction tool was used to extract the required 

features from the vibration signals.  

 J48 decision tree algorithm was used for feature selection. 

 This problem is modeled as a multiclass classification problem 

and attempts to classify using machine learning classifiers like 

K-star (KS), locally weighted learning (LWL), nearest neigh-

bour (NN), k-nearest neighbours (kNN), instance based K-

nearest using log and Gaussian weight kernels (IBKLG) and la-

zy Bayesian rules classifier (LBRC). 

The rest of the paper is organized as follows. In section 2, the 

experimental setup and experimental procedure are explained. 

Section 3 presents the feature extraction process using statistical 

analysis. The feature selection using J48 decision tree algorithm is 

presented in section 4.” In section 5, the classifiers used in the 

study are explained in detail. The results obtained from the classi-

fiers and the discussions about their performance are presented in 

section 6. Conclusions are presented in the final section (section 

7). 

2. Experimental Studies 

The main aim of this study is to identify whether the blades are in 

good condition or in defective condition. “If it is defective, then 

the objective is to deduce the condition of fault. The data used in 

the present study are same as one used in Joshuva and Sugumaran 

(2017) [11]. The experimental setup, fault simulation and experi-

mental procedure are explained in detail in [11]. The sampling 

frequency used in the study was 12 KHz and each signal (sample) 

has a length of 10000 data points. Accelerometer was used along 

with data acquisition system for acquiring data. For each condition 

of the wind turbine blade, 100 samples were taken. 

 

 
Fig. 1: Methodology 

3. Feature Extraction (Statistical feature ex-

traction) 

In this study, vibration data for various blade fault conditions were 

collected from data acquisition system (DAQ). Data acquisition is 

the process of sampling signals that measure real world physical 

conditions and converting the resulting samples into digital nu-

meric values that can be manipulated by a computer. Typically, it 

converts analog waveforms into digital values for processing. The 

main components of DAQ are sensors (to convert physical param-

eters to electrical signals), signal conditioning circuitry (to convert 

sensor signals into a form that can be converted to digital values) 

and analog-to-digital converters (to convert conditioned sensor 

signals to digital values). Directly vibration signals cannot be used 

as input to the classifier [12]. Hence, features need to be extracted 

using statistical methods. The process of computing some 

measures which will represent the signal is called feature extrac-

tion. Statistical methods for vibration signals yields different pa-

rameters such as sum, mean, median, mode, minimum, maximum, 

range, skewness, kurtosis, standard error, standard deviation and 

sample variance [13]. When the statistical feature extraction was 

completed, the features were taken and the feature selection meth-

od was implemented. The most contributing features are selected 

from the obtained statistical features using the J48 decision tree 

algorithm.” 

4. Feature Selection (J48 Decision Tree Algo-

rithm)  

Data mining techniques are being increasingly used in many mod-

ern organizations to retrieve valuable knowledge structures from 

databases, including vibration data [14]. “An important knowledge 

structure that can result from data mining activities is the decision 
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tree (DT) that is used for the classification of future events. Deci-

sion trees are typically built recursively, following a top-down 

approach. A standard tree induced with C5.0 (or possibly ID3 or 

C4.5) consists of a number of branches, one root, a number of 

nodes and a number of leaves [15-17]. One branch is a chain of 

nodes from root to a leaf; and each node involves one attribute. 

The occurrence of an attribute in a tree provides the information 

about the importance of the associated attribute. J48 algorithm (a 

WEKA implementation of C4.5 algorithm) is a widely used one to 

construct decision trees and the detailed description of J48 deci-

sion tree algorithm and how it chooses the most dominating fea-

tures were explained in Joshuva and Sugumaran (2017) [18]. The 

features that dominate generally represent the wind turbine blade 

condition descriptors. Referring to Fig. 2, one can identify four 

such most dominant features, (a) sum, (b) range, (c) standard de-

viation, and (d) kurtosis. 

 

 
Fig. 2: J48 Tree classification for feature selection 

5. Feature Classification (Lazy Classifiers)  

The selected features are served as input to the classifiers. The 

wind turbine blade fault diagnosis was carried out using K-star 

(KS), locally weighted learning (LWL), nearest neighbour (NN), 

k-nearest neighbours (kNN), instance based K-nearest using log 

and Gaussian weight kernels (IBKLG) and lazy Bayesian rules 

classifier (LBRC). 

5.1. K-Star Classifier (KS) 

Lazy classifiers are valuable for data-sets with few features. They 

depend on 'lazy learning technique'. In lazy learning strategy, the 

classifier does not sum up the information set until a question is 

made, rather than the concerned learning technique where the 

training set is initially summed up. K* is an instance-based classi-

fier, that is the class of a test example which is based upon the 

class of those training instances where they are, as firm by some 

distance function. It varies from other instance based learners 

wherein it utilizes entropy-based separation functions [19]. The 

calculation relies upon two variables, global blend and missing 

mode.” Missing mode decides how missing property valuations 

are dealt with the classifier that utilizes four modes to treat miss-

ing attributes. The modes are as per the following  

 Ignore the cases with missing attributes (M1) 

 Normalize over the attributes (M2)  

 Treat missing qualities as maximally distinctive (M3)  

 Average column entropy curves (M4) 

5.2. Locally Weighted Learning (LWL) 

Locally weighted learning (LWL) strategies are non-parametric 

and the existing expectation is finished by nearby functions which 

utilizes just a subset of the information. “The essential thought 

behind LWL is that rather than building a global model for the 

entire function space for every point of interest or a nearby model 

is made taking into account of neighbouring information of the 

inquiry point [20]. Generally, information focuses which are in the 

nearby neighbourhood to the present query point accepting a high-

er weight than the information that has its focus further away. 

LWL is likewise called lazy learning since the handling of the 

training data is moved until a query point needs to be replied re-

sponse. This approach makes LWL an extremely precise function 

estimation strategy where it is anything but difficult to include 

new training points. 

5.3. Nearest-Neighbour (NN) 

The Nearest-Neighbour Algorithm (NN) is an approximating algo-

rithm for finding a sub-optimal solution for a particular problem. 

It can store all the training examples and it can classify the new 

samples by comparing them [21]. The algorithm step is as follows 

 Choose a hub 

 From the chosen hub, pick the circular path of least weight go-

ing along with it to another hub 

 From the hub, it is linked to (not the one it started off with), 

discover the circular segment of slightest weight which won't 

make a cycle (circle) and add it to any way  

 Continue in this way until the other part of the hubs are linked 

 Once all part of the hubs are linked, join the first and last hub 

with the base circular section interfacing them, and this finishes 

the cycle around the system 

5.4. K-Nearest Neighbours (Knn) 

In pattern recognition, the k-Nearest Neighbours (kNN) algorithm 

is a non-parametric approach utilized for classification and regres-

sion. As a part of both cases, the information comprises the k 

nearest preparing samples in the feature space [22]. The output 

relies on whether kNN is utilized for classification or regression. 

In kNN classification, the output is a class membership. An item is 

characterized by a popular vote of its neighbours, with the item 

being allocated to the class most regular among its k closest 

neighbours (k is a positive whole number, normally small). If k = 

1, then the item is essentially allocated to the class of that solitary 

closest neighbour.” 

5.5. Instance Based K-Nearest Using Log and Gaussian 

Weight Kernels (IBKLG) 

In K-NN distance can be weighted distance such as Inverse of the 

distance or based on similarity. “A weight is associated to the 

training point based on the value of the point on a Gaussian distri-

bution with a mean of zero. By varying standard deviation we can 

modify the discrepancy between weights assigned to closer and 

more distant training points, but generally, distances closer to zero 

(the mean used for the curve) result in higher weights as they are 

closer to the peak of the curve [23]. Distances farther from the 

mean fall on the tails of the distribution and therefore are assigned 

lower weights. The standard deviation (σ) as input for experiment-

ing with different values for the σ hyper-parameter. For calculat-

ing logarithmic weight we used natural logarithm(       ) and 

for Gaussian we used the normal distribution formula          
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   ,with µ (mean) set to zero and experimenting with 

different σ (standard deviation) values as hyper-parameters. 

5.6. Lazy Bayesian Rules Classifier (LBRC) 

Lazy Bayesian rules classifier (LBRC) is similar to lazy decision 

tree with respect to performing lazy learning of decision rules. 

Lazy Bayesian rules classifier also builds an individual rule that is 

most appropriate to the test example, using a different technique. 

However, whereas the consequent of a rule in lazy decision tree is 

a single class that is used for classification, lazy Bayesian rules 

classifier uses a local naive Bayesian classifier. Lazy Bayesian 

rules classifier can be considered as a combination of the two 

techniques Naive Bayes tree and lazy decision tree [24]. Like 

other lazy learning algorithms, lazy Bayesian rules classifier needs 

to keep all the training examples for use at classification time. In 

contrast, non-lazy learning algorithms, such as C4.5 [25] and the 

naive Bayesian classifier, learn a theory at training time. After the 

theory is learned, the training examples can be discarded. There-

fore, lazy Bayesian rules classifier may have higher memory re-

quirements than non-lazy learning algorithms at the classification 

stage, especially when training sets are very large.” 

6. Results and Discussion  

From vibration signals, twelve descriptive statistical features were 

extracted. Out of theses twelve features, four best contributing 

features were selected using J48 decision tree algorithm. They are 

the sum, range, standard deviation, and kurtosis. “From Figure 5, 

the feature „sum‟ is the most contributing features when compared 

to other features. The other contributing features are range, stand-

ard deviation, and kurtosis. The minimum number of instances per 

leaf and the number of data used for reduced-error pruning was 

kept at 50 for selecting 4 dominating features in J48 decision tree 

algorithm. The rest of the features like mean, median, mode, min-

imum, maximum, skewness, sample variance and standard error 

were eliminated as they contribute very less in fault classification.  

 

 
Fig. 3: Classification accuracy for number of features 

 

In Fig. 3, the number of features vs classification accuracy is pre-

sented. The classification accuracy during the feature selection 

process using J48 decision tree algorithm is 86.67%. Other feature 

combinations did not perform well (Fig. 3). Hence, sum, range, 

standard deviation, and kurtosis were chosen. Then, these selected 

features were given as input to the classifier to determine the clas-

sification accuracy. From Figure 6, the selected features were 

given as the input to lazy classifiers like K-star (KS), locally 

weighted learning (LWL), nearest neighbour (NN), k-nearest 

neighbours (kNN), instance based K-nearest using log and Gaussi-

an weight kernels (IBKLG) and lazy Bayesian rules classifier 

(LBRC) to determine the classification accuracy with respect to 

faults. For all the classifiers, the parameters like batch size (100) 

and the debug „true‟ option was set as default. 

6.1. Classification Result Using K-Star (KS) 

In KS classifier, the entropy auto-blend was set as „true‟. Then the 

missing values of the attributes were set as „average column en-

tropy curves‟. The global bend parameter was varied from 1 to 

100 with respect to the missing modes of the attribute. Table 1, 

shows the results of K-star. Once the model was built, the classifi-

cation accuracy for the problem using K-star (KS) classifier was 

found to be 88.33% for global bend parameter of 40 using average 

column entropy curves. From 600 samples, 530 samples were 

correctly classified (88.33%) and remaining 70 were misclassified 

(11.17%). The time taken to build the model was about 0.05s.” 
 

Table 1: Classification result of K-star 

Global Bend parameter Classification Accuracy (%) 

1 81.50 

10 84.50 

20 86.67 

30 88.00 

40 88.33 

50 87.33 

60 86.17 

70 85.17 

80 83.67 

90 81.17 

100 25.83 

6.2. Classification Result Using Locally Weighted 

Learning (LWL) 

In LWL classifier, the number of neighbours used to set the kernel 

bandwidth (kNN) was fixed to be -1. The base classifier used by 

the locally weighted learning (LWL) was selected as default (rota-

tion forest). “The nearest neighbour search algorithm has several 

approaches in LWL; they are ball tree, cover tree, filtered neigh-

bour search, KD tree, and linear NN search. Table 2, shows the 

results of LWL. After the parameters were set, a model was built 

by the classifier for the problem. The classification accuracy for 

the problem identification using locally weighted learning (LWL) 

classifier was found to be 90.50% for rotation forest as base classi-

fier using linear NN search. Out of 600 samples, 543 samples 

were correctly classified (90.50%) and remaining 57 were mis-

classified (9.50%). The time taken to build the model was about 

0.03s. 
Table 2: Classification result of LWL 

 

6.3. Classification Result Using Nearest-Neighbour (NN) 

In NN classifier, the classifier capability check parameter was set 

as „true‟ (to reduce run time) for the classifier. After the parame-

ters were set, the classifier builds a model for the problem. The 

classification accuracy for the problem identification using Near-

est-neighbour (NN) classifier was found to be 82.33%. Out of 600 

samples, 494 samples were correctly classified (82.33%) and re-

maining 106 were misclassified (17.67%). The time taken to build 

the model was about 0.02s. 

Number of 

neighbours to 

use in kNN 

(kNN=-1) 

 

Classification Accuracy (%) 

Ball Tree Cover Tree 

Filter 

Neighbour 

Search 

KD Tree 
Linear NN 

Search 

Rotation forest 

as base classifier 
89.63 89.17 89.50 89.67 90.50 
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6.4. Classification Result Using K- Nearest-Neighbour 

(Knn) 

In kNN classifier, the number of neighbours to be used in kNN 

was fixed (kNN=1) as default for the classifier. The distance 

weighting and NN search algorithm were varied for different con-

ditions. The distance weighting method has three different types 

they are no distance weighting, weight by 1/distance and weight 

by 1-distance. The nearest neighbour search algorithm has several 

approaches in kNN; they are ball tree, cover tree, filtered neigh-

bour search, KD tree, and linear NN search. These parameters 

were varied eventually by keeping one parameter constant. Table 

3 shows the results of the kNN. After the parameters were set, a 

model for the problem was built. Once the model was built with 

respect to the conditions, the classification accuracy for the prob-

lem identification using Nearest-neighbour (NN) classifier was 

found to be 87.00% for weight by 1/distance using linear NN 

search. From 600 samples, 522 samples are correctly classified 

(87.00%) and remaining 78 are misclassified (13.00%). The time 

taken to build the model was about 0.03s.” 
 

Table 3: Classification result of kNN 

 

6.4. Classification Result Using Instance Based K-

Nearest Using Log and Gaussian Weight Kernels 

(IBKLG) 

In IBKLG classifier, the number of neighbours to be used in kNN 

was fixed (kNN=1) as default for the classifier. The standard devi-

ation to be used by the Gaussian with zero mean was fixed to be 1 

as a default to the classifier. The distance weighting and NN 

search algorithm were varied for different conditions. The nearest 

neighbour search algorithm has several approaches in kNN; they 

are ball tree, cover tree, filtered neighbour search, KD tree, and 

linear NN search. The distance weighting method has two differ-

ent types they are weight by log (distance) and weight by Gaussi-

an (distance).These parameters were varied eventually by keeping 

one parameter constant. “Table 4 shows the results of the IBKLG. 

After the parameters were set, a model for the problem was built. 

The classification accuracy for the problem identification using 

instance based K-nearest using log and Gaussian weight kernels 

(IBKLG) classifier was found to be 82.33% for weight by Gaussi-

an using linear NN search. From 600 samples, 494 samples are 

correctly classified (82.33%) and remaining 106 are misclassified 

(17.67%). The time taken to build the model was about 0.02s. 

 
Table 4: Classification result of IBKLG 

 

6.6. Classification Result Using Lazy Bayesian Rules 

Classifier (LBRC) 

In LBRC classifier, the classifier capability check parameter was 

set as „true‟ (to reduce run time) for the classifier. After the pa-

rameters were set, the classifier builds a model for the problem. 

The classification accuracy for the problem identification using 

lazy Bayesian rules classifier (LBRC) was found to be 82.33%. 

Out of 600 samples, 494 samples were correctly classified 

(82.33%) and remaining 106 were misclassified (17.67%). The 

time taken to build the model was about 0.02s.” 

6.7. Comparative Study 

From section 6.1 to section 6.6, one can find that locally weighted 

learning (LWL) classifier has a high classification accuracy 

(90.50%) compared to other classifiers.  Hence, for real-time con-

dition monitoring of wind turbine blade, locally weighted learning 

can be used effectively. Fig. 4 shows the comparison chart of all 

the classifiers used in this study. The confusion matrix of LWL is 

shown in Table 5. In confusion matrix, the diagonal elements rep-

resent the correctly classified instances and the others are misclas-

sified ones. As explained earlier, for LWL, Out of 600 samples, 

543 samples were correctly classified (90.50%) and remaining 57 

were misclassified (9.50%).Also one can observe more misclassi-

fications between good and loose conditions. For the loose condi-

tion, the bolts between the hub and the blade were made loose 

(please note that the blade was in good condition). However, at 

high wind speed, the blade can stick to the hub and behave like a 

good condition during operation. Because of this, the signature of 

the loose condition sometimes resembles good condition and the 

classifier finds difficult to distinguish between them; hence, more 

misclassifications. 

 

Fig. 4: Classification accuracy of the classifiers 

 

From locally weighted learning (LWL), the kappa statistics were 

found to be 0.886. It is used to measure the arrangement of likeli-

hood with the true class.  “The mean absolute error was found to 

be 0.055. It is a measure used to measure how close forecasts or 

prediction are with the ultimate result. The root mean square error 

was found to be 0.157. It is a quadratic scoring rule which pro-

cesses the average size of the error. The time taken to build the 

model is about 0.03s; hence, this can be used in real time for the 

fault detection on the wind turbine blade. The detailed class-wise 

accuracy is shown in Table 6. The class-wise accuracy is ex-

pressed in terms of the true positive rate (TP), false positive rate 

(FP), precision, recall and F-Measure. 

Number of 

neighbours to 

use in kNN 

(kNN=1) 

 

Classification Accuracy (%) 

Ball Tree Cover Tree 

Filter 

Neighbour 

Search 

KD Tree 
Linear NN 

Search 

No distance 

weighting 
86.67 86.17 87.17 86.67 86.17 

Weight by 

1/distance 
85.83 87.33 86.83 86.33 87.00 

Weight by 1-

distance 
86.33 86.00 86.33 86.50 86.67 

 

Number of 

neighbours to 

use in kNN 

(kNN=1) 

 

Classification Accuracy (%) 

Ball Tree Cover Tree 

Filter 

Neighbour 

Search 

KD Tree 
Linear NN 

Search 

weight by log 

(distance) 
81.17 81.50 81.63 81.00 81.33 

weight by 

Gaussian 

(distance) 

80.50 81.33 82.50 82.17 82.33 
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Table 5: Confusion matrix for locally weighted learning (LWL) 

 
 

Table 6: Class-wise accuracy of locally weighted learning (LWL) 

 
 

TP is used to predict the ratio of positives which are correctly 

classified as faults. FP is commonly described as a false alarm in 

which the result that shows a given fault condition has been 

achieved when it really has not been achieved [26]. The true posi-

tive (TP) rate should be close to 1 and the false positive (FP) rate 

should be close to 0 to propose the classifier is a better classifier 

for the problem classification [27]. In LWL, it shows that the TP 

near to 1 and FP close to 0, hence one can conclude that the classi-

fier built for the specific problem is effective for the fault diagno-

sis problem [28]. The classifier error chart is shown in Fig. 5. Here 

the squared dots represent the misclassification and the „x‟ denotes 

the correct classification.” 

 

 
Fig. 5: Classifier Errors (Classification vs Misclassification) 

7. Conclusion  

The wind turbine is an important structure in extracting wind en-

ergy from the accessible wind. This paper displays an algorithm 

based classification of vibration signals for the evaluation of the 

wind turbine blade conditions. From the acquired vibration data, 

four models were developed using data modelling techniques. The 

models were tested with 10-fold cross validation. All the classifi-

ers were compared with respect to their types and maximum cor-

rectly classified instances. The maximum classification accuracy 

was found to be 90.50% for locally weighted learning (LWL). The 

error rate is relatively less and LWL may be considered for the 

blade fault diagnosis. Hence, locally weighted learning (LWL) can 

be practically used for the condition monitoring of wind turbine 

blade to reduce the downtime and to maximize the usage of wind 

energy. The methodology and algorithm suggested in this paper 

can be potentially used for any kind of wind turbine blade to diag-

nose the blade fault with minimal modification. 
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