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Abstract: In this paper, we consider a boundary value problem for a singularly perturbed delay 

differential equation of reaction-diffusion type. We construct an exponentially fitted numerical 

method using Numerov finite difference scheme, which resolves not only the boundary layers but 

also the interior layers arising from the delay term.  An extensive amount of computational work 

has been carried out to demonstrate the applicability of the proposed method.  

1. Introduction 

A singularly perturbed delay differential equation is a differential equation in which the highest order 

derivative is multiplied by a small positive parameter  and which involves at least one delay term. Delay 

differential equations are prominent in the fields of biology, ecology, medicine, and physics [1-3]. In 

[4,5], Lange and Miura initiated the asymptotic analysis of singularly perturbed difference-difference 

equations with small shifts. The numerical analysis of these equations has found considerable growth in 

recent years due to the applications in several areas, as discussed in [5-11].    

The standard discretization methods, when applied to singular perturbation problems, are found to be 

unstable and also fail to give accurate results for small values of the perturbation parameter . Hence, 

suitable numerical methods are to be developed whose accuracy is independent of  . Various numerical 

methods to solve singularly perturbed differential equations can be found in [12–15]. In [16-22], a variety 

of numerical techniques is discussed for solving second order singularly perturbed differential-difference 

equation with small shifts.   In  [23-24], the authors Subburayan and Ramanujan presented initial value 

techniques for solving second order singularly perturbed boundary value problems with delay. In[25]the 

authors Amiraliyev and Cimen have presented an exponential fitted difference scheme for singularly 

perturbed second order boundary value problem with the large delay in the reaction term. Manikandan 

et.al [26] proposed a first order uniformly convergent numerical method for singularly perturbed 

differential equations, which exhibit boundary layers at both end points and an internal layer.   

In the present paper, we consider a boundary value problem for a singularly perturbed delay 

differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method 

using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior 

layers arising from the delay term.  The proposed numerical method converges uniformly with respect 

to.  The efficiency of the proposed method is discussed with the help of extensive computational work.  

2. Statement of the problem  

We consider the following boundary value problem for a singularly perturbed delay differential equation 

of reaction-diffusion type: 

 )()1()()()()( xfxyxbxyxaxy  20,  x             (1) 

http://creativecommons.org/licenses/by/3.0
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subject to the interval and boundary conditions, 









)2(

,01);()(

y

xxxy
                (2) 

where 10   and ,0)( xa ,0)( xb 2)()(  xbxa for 0 and )( ),( ),( xfxbxa are given 

sufficiently smooth functions on ]2,0[ , )(x is a smooth function on ]0,1[ and  is a given constant 

which is independent of . 

Assuming  .)2,1()1,0()2,0(]2,0[ 210  CCCy  

The problem(1) and (2) can rewritten as  

10),1()()()()()()(1  xxxbxfxyxaxyxyL                         (3a) 

21 ),()1()()()()()(2  xxfxyxbxyxaxyxyL            (3b) 

and )()( xxy  on ]0,1[ , )1()1(  yy , )1(')1('  yy , )2(y , where )1( y  and )1( y denote 

the left and right limit of y  at 1x  respectively. The solution )(xy  exhibits boundary layers at 0x and 

2x and the interior layer 1x [5].   

Throughout the paper, C  denotes a generic positive constant that is independent of x as well as .In 

case of discrete problems, C is also independent of the mesh parameter N . . denotes the global 

maximum norm over the appropriate domain of the independent variable, i.e., 
 

.)(max
2,0

xff
x

  

The operator L corresponding to equation (1) satisfies the following continuous maximum principle 

and the stability estimate: 

 

3.  Stability result 

Lemma 3.1.Let ,0)( xa 0)( xb satisfy 2)()(  xbxa .Let w be any function satisfying 0)0( w ,

0)2( w , 0)( xLw on )2,0( , then 0)( xw  on ]2,0[ . 

Proof: Let *x be such that )(min)(
]2,0[

* xwxw
x

 . If 0)( * xw , there is nothing to prove. 

Suppose 0)( * xw , then we have ]2,0[* x .  As 0)( *  xw , 

)1()()()()()( ******  xwxbxwxaxwxLw   

  0)()()()( ****  xwxbxaxw , as )()1( ** xwxw   

which is a contradiction. Hence our assumption is wrong. Therefore, 0)( * xw , which proves the lemma. 

 

Lemma 3.2.Let ,0)( xa 0)( xb satisfy 2)()(  xbxa . Let y is any function, then for all 

]2,0[x , we have 









 Lyyyxy


1
,)2(,)0(max)( . 

Proof: We construct two barrier functions   defined by  
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1

,)2(,)0(max)( xyLyyyx 











  

Then we have  
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0 , 
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and we have  
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Using the condition of )(xa  and )(xb and using Lemma 3.1 we get 0)(  x on [0,2]. Therefore,  
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1
,)2(),0(max)( ,  ]2,0[x . 

Lemma 3.3.Let ,0)( xa 0)( xb satisfy 2)()(  xbxa .Let y  be the solution of (1) and (2). Then, for 

all ]2,0[x , we have 

 fyCxy

i
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2)( )(  , for 1 , 0i  

and 














 




)2(2

)2(

2)( )( i

ii

i ffyCxy  , for 4 ,3 ,2i . 

Proof:  

From (1) we have  

 )()1()()()()( 1 xfxyxbxyxaxy                 (4) 

and the bound on )(xy  follows from lemma 3.2 and bound on )(xy   follows from (4). 

To bound )(' xy in the interval  1,0 , consider the interval ]1,0[],[  aaN . Then by mean value 

theorem, for some N , 






)()(
)('

ayay
y


 , 

yy 2

1
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  . 

Now for any Nx , we get 
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dssyyxy
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2

1

)('  . 

Similarly, to bound )(' xy in the interval  2,1 , consider the interval ]2,1(],[  aaN Then by 

mean value theorem, for some N ,   





)()(
)(

ayay
y


 yy 2

1

2)(


   

Then for any Nx , we get 

 )()(' 2

1

syfCxy 


 . 

 

which follows the required bounds. Similarly differentiating (4) once and twice gives the bounds on 
)3(y and 

)4(y  follows from those y and y  . 

 

4.  Numerical algorithm 

Step1.By setting   in equation (1), we get a recurrence relation for the solution of reduced problem 

as 

)(

)1()()(
)( 0

0
xa

xyxbxf
xy


                 (5) 

whose solution does not satisfy both the conditions (2). 
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Hence the value of )1( xy  can be obtained by the solution of reduced problem i.e., )(0 xy , i.e., 





)1(

)0()1()1(
)1( 0

a

ybf
y (say). 

Now the problems (3) can be rewritten as 

10),1()()()()()()(1  xxxbxfxyxaxyxyL              (6) 

subject to the conditions  01);()(  xxxy  , )1(y  

and 

21 ),()1()()()()()(2  xxfxyxbxyxaxyxyL              (7) 

subject to the conditions )1(y , .)2( y  

 

Step2.  The solution of (1)-(2)will be of the form   

000)( wvyxy                   (8) 

where 0v and 0w are the left and right boundary layer functions respectively.  

00 , wv satisfy the differential equations         

    )1()()()(  xyxbxfwvyxawvy oooooo  

) ,0(         ; 0)()1(
)(

02
0

2








wb
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02
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wb

d
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            (10) 

with )0()0(
2

)0( 000 ywv 







 


  

)2()0(
1

000 ywv 







 


  

0)()( 00   wv  

where .
2

  and  






xx 

  

Solutions of (9) and (10) are given by 




)0(
0 )(

a
Aev


                (11) 




)2(
0 )(

a
Bew


                (12) 

 Therefore, solution of  (8) becomes  

)2(
)2()0(

0 )()(
x

a
x

a

BeAexyxy


              (13) 

Applying the boundary conditions we get A and B as 

   
  ,

1

)2()0()0(

)2(2)0(2

)2(
2

00
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eyy
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             (14) 

   
  .
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)2(2)0(2

)0(
2

00
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e

eyy
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             (15) 

 

Step 4. 

Now the interval ]2,0[ is divided into N2 equal subintervals of constant step length h . Let 

2,...,),1(,...,,0 2110   NNN xxxxx  be the mesh points, such that Niihxi 2,.....1,0 ;  .  We choose N

such that 1Nx and 22 Nx . The boundary layer lies to the left end of the interval  1,0  and to the right 

end of the interval  2,1 .  

    At a point ixx  , the equation (6) becomes 

 ),()( iii yxgxy  where, ).()()()()(),( Niiiiiii xxbxyxaxfyxg    
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By Numerov method, we have  .10
12

12
112

11
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Therefore, we have   
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Now a fitting factor  is introduced in the above difference scheme as   

 

    )()(10)(10
12

1
                      

10
12

12

111111

11112
11

NiiNiiNiiiii

iiiiii
iii

xbxbxbfff

yayaya
h

yyy


















 





 

for 1,...2,1  Ni .               (17) 

To find   on the left boundary layer we use the asymptotic solution   

ix
a

ii Aeyxv 

)0(

0 )(


               (18) 

where A  is given by (14).   

We assume that solution converges uniformly to the solution of (1), then 11 10   iii fff  is bounded. 

 As 0h  equation (17) becomes 

   11
0

1120
10lim

12

)0(
2lim 
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h
yyy
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yyy




           (19) 

where



h

  

Substituting (18) in (19) and simplifying, we get the fitting factor as 
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Sinh
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            (20)     

which is a constant fitting factor.  This will be the fitting factor in the interval  0,1 .   

Substituting the fitting factor (20)  in (17), we have the three term recurrence relation as  

    )()(10)(10
12

1
                   

1212

102

12
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221
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for 1,...2,1  Ni .                            (21) 

The above tridiagonal system (21) along with the boundary conditions   Nyy );0(0 can solved by 

Thomas algorithm.   

Step 5. 

     At a point ixx  , the  differential equation (7) can be written as     

 ),()( iii yxgxy  where, )()()()()(),( Niiiiiii xyxbxyxaxfyxg   

  Proceeding as in Step 4, we get the three-term recurrence relation 

    )()(10)(10
12

1
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xybxybxybfff
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y

a

h












































 

for 12,...,2,1  NNNi .              (22) 

The above tridiagonal system (22) along with the boundary conditions   NN yy 2 can solved by 

Thomas algorithm. 
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5.  Numerical examples 

The numerical method proposed in this paper is applied to four examples to illustrate the  uniform 

convergence. Since the exact solutions for these problems are not available, the maximum absolute errors  

are calculated using the double mesh principle as follows: 

.max 2
2

0

N
i

N
i

Ni
yyE 



 
  

For a value of N , the  -uniform maximum absolute error is calculated by the formula .max  



EE N   

The numerical rate of convergence for all the examples has been calculated by the formula 

2log

|/|log 2N
N EE

R 
 

 . 

 

Example 1. [24, p. 76]. Consider a constant coefficient boundary value problem  

1)1()(5)(  xyxyxy ,  01;1)(  xxy , 2)2( y . 

 

Example 2. [26, p. 87].Consider a constant coefficient boundary value problem 

0)1()(2)(  xyxyxy ,  01;1)(  xxy , 1)2( y . 

 

Example 3. [24, p. 76].Consider a variable coefficient boundary value problem

1)1()()5()(  xyxyxxy ,  01;1)(  xxy , 2)2( y . 

 

Example 4. [24, p. 76]. Consider a boundary value problem with discontinuous source term










21;1

10;1
)1()(5)(

x

x
xyxyxy ,  01;1)(  xxy , 2)2( y . 

The maximum point wise errors and the rates of convergence of the boundary value problems in 

Examples 1-4 are presented in Tables 1-4 respectively. The numerical solutions plotted in Figures 1-4 

illustrate the nature of the boundary layers for these problems.  

 We compared our results with the results available in [26].   It has been observed that the 

numerical rate of convergence is better than the method proposed in [26].   

 

Table 1. 

 2N 512
 

1024 2048 4096 8192 16384 
92

 2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005   1.1449e-005   5.7023e-006 

102  3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005   1.6242e-005   8.0771e-006 

112  4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005   1.1449e-005 

122  6.9788e-004   3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005   1.6242e-005 

132
 1.0677e-003   4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005 

142  1.7074e-003   6.9788e-004   3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005 

152  2.3379e-003   1.0677e-003   4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005 

NR  1.0855   1.0438   1.0221   1.0110   1.0056 --- 

 

Table 2. 

 2N 512
 

1024 2048 4096 8192 16384 
92

 2.5868e-004   1.2449e-004   6.1054e-005   3.0232e-005   1.5042e-005   7.5028e-006 

102  3.7669e-004   1.7881e-004   8.7028e-005   4.2926e-005   2.1316e-005   1.0621e-005 

112  5.5695e-004   2.5868e-004   1.2449e-004   6.1054e-005   3.0232e-005   1.5042e-005 

122  8.3295e-004   3.7669e-004   1.7881e-004   8.7028e-005   4.2926e-005   2.1316e-005 

132
 1.2725e-003   5.5695e-004   2.5868e-004   1.2449e-004   6.1054e-005   3.0232e-005 

142  1.8719e-003   8.3295e-004   3.7669e-004   1.7881e-004   8.7028e-005   4.2926e-005 

152  3.0986e-003   1.2725e-003   5.5695e-004   2.5868e-004   1.2449e-004   6.1054e-005 

NR  1.0551  1.0279  1.0140   1.0071   1.0035 --- 
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Table 3. 

 2N 512
 

1024 2048 4096 8192 16384 
92

 1.8782e-004   8.8565e-005   4.2983e-005   2.1170e-005   1.0505e-005   5.2323e-006 

102  2.7566e-004   1.2817e-004   6.1432e-005   3.0068e-005   1.4874e-005   7.3967e-006 

112  4.1067e-004   1.8726e-004   8.8280e-005   4.2842e-005   2.1099e-005   1.0469e-005 

122  6.2992e-004   2.7512e-004   1.2788e-004   6.1289e-005   2.9997e-005   1.4838e-005 

132
 9.7186e-004   4.1015e-004   1.8697e-004   8.8135e-005   4.2770e-005   2.1063e-005 

142  1.5026e-003   6.2936e-004   2.7484e-004   1.2774e-004   6.1216e-005   2.9961e-005 

152  1.9213e-003   9.7137e-004   4.0988e-004   1.8682e-004   8.8062e-005   4.2734e-005 

NR  0.98399   1.0430 1.0217 1.0109 1.0056 --- 

   

 

Table 4. 

 2N 512
 

1024 2048 4096 8192 16384 
92

 2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005   1.1449e-005   5.7023e-006 

102  3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005   1.6242e-005   8.0771e-006 

112  4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005   1.1449e-005 

122  6.9788e-004   3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005   1.6242e-005 

132
 1.0677e-003   4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005   2.3073e-005 

142  1.7074e-003   6.9788e-004   3.0199e-004   1.4003e-004   6.7099e-005   3.2837e-005 

152  2.3379e-003   1.0677e-003   4.5089e-004   2.0501e-004   9.6607e-005   4.6858e-005 

NR  1.0855   1.0438 1.0221 1.0110 1.0056 --- 

 

 

 

Figure 1. Graph of the solution with 102 for Example 1. 
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Figure 2. Graph of the solution with 102 for Example 2. 

 

                              Figure 3. Graph of the solution with 102 for Example 3. 

 

Figure 4. Graph of the solution with 102 for Example 4. 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

 x

 y
( 

x )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

x

 y
( 

x )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

x

 y
( 

x )



9

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042110 doi:10.1088/1757-899X/263/4/042110

6.  Discussion and Conclusions 

In this paper, we considered a boundary value problem for a singularly perturbed delay differential 

equation of reaction-diffusion type. To obtain an approximate solution of this problem, we constructed an 

exponentially fitted numerical method using Numerov finite difference scheme.  The method resolves the 

boundary layers due to the perturbation parameter as well as the interior layers due to the delay term.  

The proposed method is  uniformly convergent order one and has been illustrated in tables 1-4.  To 

illustrate the nature of the boundary layers and the internal layer, graphs are plotted in Figures 1-4 for 

problems given in Examples 1-4 respectively. By considering several numerical results on a variety of 

examples, it is concluded that the present method is efficient in solving the singularly perturbed linear 

differential equations of reaction-diffusion type with delay. 
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