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a b s t r a c t

Complexities in the full genome expression studies hinder the extraction of tracker genes to analyze the
course of biological events. In this study, we demonstrate the applications of supervised machine learning
methods to reduce the irrelevance in microarray data series and thereby extract robust molecular mark-
ers to track biological processes. The methodology has been illustrated by analyzing whole genome
expression studies on bone-implant integration (ossointegration). Being a biological process, osseointe-
gration is known to leave a trail of genetic footprint during the course. In spite of existence of enormous
amount of raw data in public repositories, researchers still do not have access to a panel of genes that can
definitively track osseointegration. The results from our study revealed panels comprising of matrix met-
alloproteinases and collagen genes were able to track osseointegration on implant surfaces (MMP9 and
COL1A2 on micro-textured; MMP12 and COL6A3 on superimposed nano-textured surfaces) with 100%
classification accuracy, specificity and sensitivity. Further, our analysis showed the importance of the
progression of the duration in establishment of the mechanical connection at bone-implant surface.
The findings from this study are expected to be useful to researchers investigating osseointegration of
novel implant materials especially at the early stage. The methodology demonstrated can be easily
adapted by scientists in different fields to analyze large databases for other biological processes.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Modern day molecular biology tools and techniques like
microarray, gene expression profiling have provided researchers
with a vast armory to decode the molecular mechanisms of differ-
ent biological processes. Advances in medicine and related fields
require an in-depth understanding of these mechanisms at cellular
level to identify and characterize the disease condition. In some
cases, confirmation of the progress of the improvement in the clin-
ical condition during the course of therapy also has been made
easy by these techniques. Analysis of the enormous amount of data
generated through these techniques is the known to be the most
time consuming task [1]. The inconvenience caused thereby raises
the challenge to the analysts towards extracting the most desired
information. Difficulties in finding gene annotations and relating
them to literature references have made this a tedious job. As a
result of this, the interpretation of the data analysis cannot be
easily linked to the previous studies. Finally, the rarity of standard-
ized protocol limits the scope of the data mining. There are very
few, practically none such single tool which can perform the tasks

all together, including database storage, data queries, statistical
analysis, clustering, functional analysis, interrelation within the
relevant cluster and interaction with public databases as well as
experimental outcomes on the Internet [2]. In order to extract
meaningful information from freely available datasets/data series
we have designed a methodology that can be easily adapted by
researchers in different fields to extract succinct information from
existing datasets. The application of this methodology has been
demonstrated on osseointegration – phenomenon of crucial clini-
cal importance.

The functional success of the oral prosthetics is directly related
to the extent of osseointegration of the implants. Conceptualized
by Branemark, osseointegration can be described as the ‘‘direct
structural and functional connection between ordered, living bone
and the surface of a load-carrying implant” ensuring a long term
clinical stability of the implants [3,4]. Researchers working in the
field of implantology often need to validate the osseointegrative
potential of materials developed when compared with the existing
ones. Although histological studies on samples collected from the
bone-implant interface are considered to be among the most reli-
able methods in experimental in vivo analysis, such techniques
involve invasive techniques. Comparative expression profiling of
whole genome either by microarray or selective genetic profiling
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by Real Time-Polymerase Chain Reaction (qPCR) provides an alter-
native approach to understand the underlying interactive mecha-
nisms of cells, factors and chemical signals [5,6].

In spite of the existence of such advanced techniques implantol-
ogists are still elusive regarding the complex genetic networks
underlying osseointegration. The existence of >30,000 functional
genes makes it very challenging to interpret the results from large
scale gene expression data. This prompts the necessity to identify a
panel of molecular markers comprising of a minimal number of
genes that can be used by researchers to monitor osseointegration
especially in the early phase. Complications in the analyzing the
large microarray data are mainly arisen by the huge dimensionality
of the comparative gene expression data and availability of rela-
tively small number of samples [7,8]. To overcome this, we have
adopted a reductionist approach in this study using various statis-
tical classifiers in order to identify the key genes necessary. This
approach directs the analyst towards a significant conclusion by
sequentially removing the statistically irrelevant genes which, at
the end, retains the most desirable set of features.

2. Materials and methods

2.1. Selection of test set and validation set

The freely accessible public repository of functional genomics
data, Gene Expression Omnibus (GEO) was used to search for data-
sets in the field of osseointegration biology. The keyword(s) ‘‘im-
plant stability or osseointegration” searched in the tool revealed
133 results. Since the purpose of this study was to investigate
osseointegration in human, we excluded the non-human results
and this reduced the number to 130 results. Furthermore, as we
required series of datasets for our analyses rather than individual
samples, we applied the filter ‘‘series”. Upon applying this filter
the results showed up only two studies conducted on humans
(GSE41446 and GSE42288) and the eliminated the remaining 128
individual datasets. Thus the two datasets, GSE41446 and
GSE42288 were included for further analysis. The dataset
GSE41446 comprised of samples collected from 11 human partici-
pants following 3 and 7 days of implant fixation with two different
types of oral implants namely TiOBlast (micro-roughened surface)
and Osseospeed (micro-roughened with superimposed nano-scale
topography-Sup-Nano) [9]. The study was specifically designed to
investigate the influence of surface topography on the transcrip-
tional regulation at the bone-implant interface. The second dataset
(GSE42288) was available from a study performed on retrieved
titanium implants with surface topographies exhibiting Sup-
Nano features (Osseospeed) and microrough surface (TiOBlast)
which were placed in the alveolar bone of 11 systemically healthy
subjects and 10 smoking subjects and subsequently harvested at 3
and 7 days after placement [10]. Given the fact that the primary
purpose of our study was to identify a gene cluster suitable to
monitor early stages of osseointegration, the involvement of smok-
ers and non-smokers as separate categories in the dataset
GSE42288 was not relevant and therefore were combined. Consid-
ering the diverse nature of the target population in mind,
GSE41446 was selected as the ‘‘test set” whereas the dataset
GSE42288 was used as the ‘‘validation set”.

2.2. Categorization of test set and validation set

The test set GSE41446 was divided into four groups which were
named as Class 1 - samples collected from participants treated
with Sup-Nano implants at day 3, Class 2 - samples collected from
participants treated with Sup-Nano implants at day 7, Class 3 -
samples collected from participants treated with micro-

roughened implants at day 3, Class 4 - samples collected from par-
ticipants treated with micro-roughened implants at day 7 (Fig. 1).

As mentioned earlier, the validation dataset was obtained from
a study conducted by Thalji et al. wherein they investigated the
influence of smoking on osseointegration and therefore involved
three factors, namely: day of sample collection, smoking habit
and surface modification, thereby categorizing them into eight
groups. We combined the data for ‘‘smokers” and ‘‘non-smokers”
under different categories and hence were able to categorize the
dataset into four different classes. The resultant classes of the val-
idation dataset GSE42288 were as Class 1 - samples collected from
smoker and non-smoker participants treated with Sup-Nano
implants at day 3, Class 2 - samples collected from smoker and
non-smoker participants treated with Sup-Nano implants at day
7, Class 3 - samples collected from smoker and non-smoker partic-
ipants treated with micro-roughened implants at day 3, Class 4 -
samples collected from smoker and non-smoker participants trea-
ted with micro-roughened implants at day 7.

2.3. Extraction of Differentially Expressed (DE) genes

The classified datasets were processed using the interactive
web tool - NCBI-GEO2R. This tool allows users to compare between
two or more groups in a GEO series in order to identify DE genes.
This was followed by extraction of p values, log FC (Fold Change)
values and gene symbols of the DE genes. Subsequently, the statis-
tically significant DE genes were identified by setting the cut-off
values of p value and log FC values as <0.05 and �±2 respectively.

2.4. Isolation of subset of genes and validation

Keeping either the surface topography or the day of study con-
stant, subset(s) of genes were selected by sequentially reducing the
features using three classifiers namely Naïve-Bayes (NB), k-Nearest
Neighbors (kNN), Support Vector Machine (SVM) at 10-fold cross
validation using Orange Canvas v2.7 [11,12]. The classification effi-
ciency for each of the reductions as well as classifiers was con-
stantly monitored in order to maximize the classification
accuracy, sensitivity, specificity and area under the curve and to
minimize the Brier score. Zero Brier score denotes the maximum
accuracy in the predictions. The subsets of genes selected from
the test set were validated with the dataset GSE42288 by evaluat-
ing classification accuracy, sensitivity, specificity, area under the
curve and Brier score. The flow chart of the detailed study protocol
is presented in Fig. 1. The details of the genes selected were
retrieved from www.genecards.org [13].

2.5. Gene Ontology (GO)

All the DE genes between day 7 and day 3 (considering only p-
value < 0.05) on both of the surfaces (micro-roughened and Sup-
Nano) were extracted through GEO2Enrichr, a browser extension
and server app available within GEO [14]. The functional analysis
of those genes was performed by Enrichr [15,16]. Results of the
analysis were represented in tabular form to evaluate gene ontol-
ogy parameters like biological process, molecular function, and cel-
lular component [17,18]. Top five functions or components were
selected for the further discussion. Furthermore, the molecular
functions or cellular components or biological processes involving
less than five genes were excluded to match the significant pre-
dicted factors with the true one. The GO analyses were also per-
formed with the DE genes extracted at different cut-off levels for
logarithm of FC i.e. 1 and 2 while keeping the level of significance
same.

A. Barik et al. / Journal of Biomedical Informatics 68 (2017) 104–111 105



3. Results

3.1. Differentially expressed (DE) genes

After the classification of the test set GSE41446 was performed,
the DE genes were extracted. While comparing class 1 and class 2
(Sup-Nano surfaces at day 3 vs. day 7), class 3 and class 4 (micro-
roughened surfaces at day 3 vs. day 7), 13 (CHIT1, DCN, COL1A1,
POSTN, COL3A1, COL6A3, COL1A2, LUM, CHI3L1, MMP7, MMP9,
MMP12 and TM4SF19) and 22 (SLPI, GPNMB, POSTN, DCN, BGN,
SPARC, ACP5, COL1A1, COL6A3, COL3A1, GM2A, COL1A2, LUM,
CCL22, GAL, CHIT1, CTSK, CHI3L1, MMP7, MMP9, MMP12 and
TM4SF19) genes listed out respectively on the basis of p
value < 0.05 and log FC � ±2. All the DE genes identified following
the GEO2R analysis showed upregulation in both of the compar-
isons except SLPI (Secretory Leucocyte Peptidase Inhibitor) which
was found to be downregulated when compared between class 3
and class 4 (micro-roughened surfaces at day 3 vs. day 7). Similar
analyses were performed to compare between class 1 and class 3
(Sup-Nano surfaces at day 3 vs. micro-roughened surfaces at day
3), class 2 and class 4 (Sup-Nano surfaces at day vs. micro-
roughened surfaces at day 7). Although, none of the genes met
the stringent criteria set for the assessments (p-value < 0.05 and
log FC � ±2), however there was generally tendency towards
upregulation on Sup-Nano surfaces compared to micro-
roughened surfaces (172 genes upregulated and 148 genes down-
regulated at day 3; 182 genes upregulated and 124 genes downreg-

ulated and at day 7) when only p-value < 0.05 was considered as
the cut-off criterion.

3.2. Isolation and validation of the most significant gene-set

Analysis using Orange Canvas v2.7 revealed that the genes
MMP12 and COL6A3 taken together were able to track the progres-
sion of osseointegration on Sup-Nano surfaces between three and
seven days with 100% classification accuracy, sensitivity and speci-
ficity for SVM and kNN classifiers. Although, Naïve-Bayes classifier
showed slightly lower classification accuracy at (93.33%) and
specificity at (81.82%), it was still high (>80%) and hence may be
considered acceptable. Another subset of gene consisting of
MMP9 and COL1A2 was found to track osseointegration on
micro-roughened implant. In both of the cases, the lowest obtained
Brier score denotes the highest accuracy in the probabilistic predic-
tions done by kNN. The details may be found in Table 1.

3.3. Gene Ontology (GO)

The outcome of GO analysis without setting any cut-off for FC
values (comparisons between day 7 and day 3 on both of the sur-
faces) performed by Enrichr is represented in Table 2 by selecting
top five Biological Processes, Cellular Component, Molecular func-
tion all three and among them, those were excluded which involve
less than five genes. The results from the other two GO analyses

Fig. 1. Designed protocol for the selection of gene set from microarray data.
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Table 1

Selection and validation of subset of genes comparing the groups from where samples taken at 3 days and 7 days.

Surface texture Groups
compared

Selected
combination of genes

Classifier used Test set (GSE 41446) Validation set (GSE 42288)

Classification
accuracy

Sensitivity Specificity Area under the
curve

Brier
score

Classification
accuracy

Sensitivity Specificity Area under the
curve

Brier
score

Sup-Nano
(Osseospeed)

Day 3 Day 7 MMP12 COL6A3 Naive-Bayes 0.9333 1.0000 0.8182 1.0000 0.0581 1.0000 1.0000 1.0000 1.0000 0.0219
k-nearest
neighbor

1.0000 1.0000 1.0000 1.0000 0.0034 1.0000 1.0000 1.0000 1.0000 0.0000

Support vector
machine

1.0000 1.0000 1.0000 1.0000 0.0581 1.0000 1.0000 1.0000 1.0000 0.0282

Micro (TiOBlast) Day 3 Day 7 MMP9 COL1A2 Naive-Bayes 1.0000 1.0000 1.0000 1.0000 0.0070 1.0000 1.0000 1.0000 1.0000 0.0133
k-nearest
neighbor

1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0002

Support vector
machine

1.0000 1.0000 1.0000 1.0000 0.0325 1.0000 1.0000 1.0000 1.0000 0.0298

Table 2

GO analysis by comparing samples collected at Day 3 and Day 7 at different implant surfaces without FC cut-off.

Control Experimental Surface Biological processes Cellular component Molecular function

Day 3 Day 7 Sup-Nano
(Osseospeed)

Collagen metabolic process (GO:0032963) Collagen trimer (GO:0005581) Fibronectin binding (GO:0001968)
Multicellular organismal macromolecule metabolic process
(GO:0044259)

Cornified envelope (GO:0001533) Collagen binding (GO:0005518)

Collagen catabolic process (GO:0030574) Lysosomal lumen (GO:0043202) Extracellular matrix binding (GO:0050840)
Multicellular organismal metabolic process (GO:0044236) Vacuolar lumen (GO:0005775)
Multicellular organismal catabolic process (GO:0044243)

Micro (TiOBlast) Collagen metabolic process (GO:0032963) Fibrillar collagen trimer
(GO:0005583)

Platelet-derived growth factor binding (GO:0048407)

Multicellular organismal macromolecule metabolic process
(GO:0044259)

Collagen trimer (GO:0005581) Collagen binding (GO:0005518)

Collagen catabolic process (GO:0030574) Extracellular matrix (GO:0031012) Extracellular matrix structural constituent
(GO:0005201)

Multicellular organismal metabolic process (GO:0044236) Lysosomal lumen (GO:0043202) Fibronectin binding (GO:0001968)
Extracellular matrix disassembly (GO:0022617) Cornified envelope (GO:0001533) Proteoglycan binding (GO:0043394)
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(cut-off values for log FC set at 1 and 2) as described in methods are
presented in Table 3 and 4 respectively.

3.3.1. Biological processes

Identification of the biological functions associated with the
early osseointegration showed collagen metabolic process
(GO:0032963) to be the most enriched when day 7 samples were
compared with day 3 ones, irrespective of the implant surface
topography. The other processes enriched were mostly related to
the structural organization of the extra-cellular matrix (ECM)
(Table 2). When log FC cut-offs were selected at 1 and 2, the most
enriched processes were found to be related to organization of
ECM components and collagen metabolism obliterating the
chemotactic activities while evaluating effect of days for both the
surfaces (Tables 3 and 4).

3.3.2. Cellular component

Fibrillar collagen trimer (GO:0005583) with the highest enrich-
ment score was identified as the most highlighted cellular compo-
nent at day 7 (compared to day 3) on either implant surface. Other
highly enriched components included collagen trimer
(GO:0005581) and extracellular matrix (GO:0031012) for the com-
parisons made on micro-roughened surface (day 7 vs. day 3)
(Table 2). Cut-off for log FC values at 1 resulted in enrichment of
the components related to cell-matrix interaction at both types
of implant surface (Table 3). Increase in the stringency of the crite-
ria showed the collagen trimer and ECM as the highly enriched
components associated with the process (Table 4).

3.3.3. Molecular function

Enrichment analysis of the molecular functions demonstrated
the high-scoring terms to include fibronectin binding, collagen
binding and PDGF binding. These types of attachments were
related to the cell-matrix and cell-cell adhesion to the modified
surfaces at early stage (Table 2). Setting of log FC value at 1 as a
pre-determined criterion for evaluating the effect of days, collagen
binding seemed to be important for both the implants but with
some evidences of inflammatory activities specifically at micro-
roughened surface (Table 3). Selection of more widely differenti-
ated genes for GO analysis showed the structural assembly of
ECM to be relevant at molecular level of functioning. Collagen
binding showed some prospect in this aspect while studying the
micro-roughened surface (Table 4).

4. Discussion

Modern day molecular technologies like DNA microarrays and
qPCR profiling have vastly increased our understanding about the
patterns of gene expression during biological responses in living
systems. With the increasing use of such tools in implantology
research, it has become possible for researchers to appreciate the
gene expression profiles in different cells interacting with implant
surfaces during osseointegration. However, the real messages hid-
den in these complex molecular interactions get dissipated only
when the results are interpreted using appropriate statistical tools.
In this study we have utilized statistical classifiers like SVM, NB
and kNN to identify cluster of genes from whole microarray data-
sets available on the internet that may be able to monitor the
course of osseointegration on implant surfaces. The scope of these
three classifiers, kind of supervised learning method of classifica-
tion fits well with the microarray like large datasets by featuring
the ability to deal with large number of features and to identify
the present outliers [19,20]. Probability of occurring error in the
outcome prediction is very high when these classifiers are applied
to extract smaller features from a very complex dataset. According T
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to the vivid literature study, accurate prediction rule is constructed
using 10-fold cross validation with least rate of prediction error
[21]. The outcomes and interpretations of microarray data analysis
also can be easily modulated by setting different FC and statistical
cut-offs at different levels [22]. In order to obtain robust biological
interpretations from comparative analysis between datasets, we
kept stringent statistical cut-offs. The cut-off values for log FC
and p-value were set as �±2 and <0.05 respectively, with an intent
to isolate only those genes which vary widely and significantly in
expression between the two conditions being compared.

Comparisons between days 3 and 7 on either micro- or super-
imposed nano-textured demonstrated upregulation of all signifi-
cant genes at day 7 except for SLPI (Secretory Leukocyte
Peptidase Inhibitor). SLPI has an anti-inflammatory property. Com-
plete absence of the gene is known to help in inflammation [23].
The downregulation of SLPI possibly helps in remodulation of the
ECM. The role of MMP9 and MMP12 in the tissue remodeling
through breakdown of ECM components on activation by extracel-
lular proteinases validated the selection of those two genes. The
rest two genes, COL6A3 functions by binding ECM components
and COL1A2 has a role in fibril formation in the connective tissues.
All the four genes, thus, aid in primary stability within a week of
post-implantation period. It is pretty common to identify signifi-
cant features by developing complex computer based algorithms
[24,25] but this will need expertise and knowledge in computer
coding. Therefore, the authors aimed towards framing an easy
approach which is also adaptable for all end users to find signifi-
cant information. The use of GEO2R and further classifying two dis-
ease conditions using the expression data with minimal number of
genes and classifiers like SVM, kNN, NB is already gaining popular-
ity in diseases like cancer. Table 5 shows classification accuracy of
the genes selected using reductionist approach implementing
GEO2R with SVM and other statistical classifiers in recent litera-
tures with corresponding model efficiency and justifies the utility
of the proposed methodology in current scenario for gene selection
towards optimized disease and biological process classification.
The uniqueness of this study is to harnessing biomarkers to differ-
entiate a biological process rather than a disease and that also with
100% classification accuracy is first of its kind.

The significance of the outcome was further validated by bio-
logical interpretations drawn from GO analysis. Taking all the DE
genes into account during GO analysis without any predetermined
criterion, collagen metabolism was identified amongst the most
enriched biological processes during early osseointegration irre-
spective of the surface modifications. Collagen, being the most
abundant fibrous protein in mammalian ECM, provides the
mechanical stability to the structure of tissue on association with
the elastin microfibrils [30]. Owing to this, collagen metabolic
and catabolic processes are considered equally important for cell
differentiation on implant surfaces. Imbalance between these two
processes results in alteration of structure of ECM, overall shape
of tissue and optimal physical properties like mechanical loading,
tensile strength. Among other top ten processes, organization of
ECM and extracellular structure were identified. Such processes
which help in wound repair by rearrangement, assembly or disas-
sembly of the constituent parts resulting in reformation of original
structure [31] seem important on nano-textured surface. However,
the collagen fibril formation seems to be associated with both the
surfaces. The collagen genes (Collagen Type I, III, XII) associated
with the selected biological processes are mostly fibril forming col-
lagen present in bone and connective tissues. Among them Type
XII collagen in association with the Type I is known to modify
the interaction between collagen fibrils and the neighboring
matrix. In accordance with the biological processes, the topmost
cellular component affected at the bone-implant interface was
found to be the collagen trimer and ECM. In addition to these, var-T
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ious studies reported increased osteoconduction and osseointegra-
tion on immobilization of type I collagen and other factors like
PDGF (Platelet Derived Growth Factor), fibronectin on implant fix-
tures which validates the highly enriched molecular functions
found from the analysis [32–34].

Fixing the cut-off for log fold-change values at 1 unfolded the
similar role of ECM components at the bone-implant interface dur-
ing the early stages. ECM structures itself as a network largely
composed of the fibrous proteins collagen, elastin and
associated-microfibrils, fibronectin, etc. Besides performing struc-
tural role in mammalian tissues, it regulates cell behaviors like
proliferation, adhesion, migration, differentiation as well as death.
Continuous remodeling of ECM modulated by the genetic products
of Matrix Metalloproteinase (MMP) and Collagen (COL) genes
influence these cell behaviors by maintenance of stem cell storage
which play a vital role in damaged tissue restoration such as bone
remodeling and wound healing [35]. Associated cellular compo-
nents supported the outcome of biological processes which gets
strengthened by the increased cellular interaction to ECM as
revealed on the micro-roughened implant surface. Introduction
of micro-roughness on the surface seems to induce binding of sev-
eral proteins and factors at the surface along with some inflamma-
tory consequences due to presence of foreign body. These findings
corroborated with the discussion of the original work [9].

As a result of GO analysis based on log FC cut-off value as 2, the
biological processes, molecular functions and the cellular compo-
nents showed the same functions irrespective of the surface mod-
ifications as discussed previously. Increase in the cut-off levels
resulted in the enrichment of only highly DE genes related to these
functions-MMPs (7, 9, 12) and COL (1, 3, 6).

Interestingly, MMPs and COLs were the classes which were
identified as the molecular markers to track the early osseointegra-
tion as discussed above. Based on the findings from statistical clas-
sifiers and GO analysis, it can be concluded that expression
profiling of these genes only may give a direction towards the suc-
cessful tracking of the process rather than full genome studies.
Similar approach may be used to analyze other clinical conditions
also.
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