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Abstract

The present study, which is a continuation of the previous paper, augments a recent 

work on the use of phylogenetic networks. We develop techniques to characterize 

the topology of various X-trees and binary trees of biological and phylogenetic 

interests. We have obtained the results for various k-level X-trees and phylogenetic 

networks with variants of Zagreb, Szeged, Padmakar-Ivan, Schultz and Atom Bond 

Connectivity topological indices.
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1 Introduction

The present study on topological characterization of X-trees and binary trees of 

interest in biological and phylogenetic networks is a continuation of the previous 

paper by the current authors [1] hereafter to be referred as Paper I. The present 

work is also stimulated by a recent work of Forster et al. [2] who have outlined 

the value of phylogenetic network in the context of ongoing coronavirus 2019 

(COVID-19) epidemic that has plagued the entire world. They have shown that 

the graph theoretical network can be utilized in the analysis of virological data, 

that is, to trace various the COVID-19 sources and to develop mitigation strate-

gies to prevent the spread of the disease. Moreover, such biological networks can 

also be of great use in machine learning and artificial intelligence applications of 

controlling the spread of the epidemic through contact tracing, clustering, source 

identifications and statistical analysis of the epidemic. Such tools can be of great 

value for efficient identification of the affected persons and subsequent quarantin-

ing strategies to facilitate control and spread of the disease. In yet another previ-

ous application, Balasubramanian et  al. [3] have applied graph theoretical tech-

niques to quantify perturbations of proteomes, for example, the proteomes of rats 

through externally applied toxins. The resulting proteomic maps or zig-zag trees 

of amino acids constitute certain topological patterns which alter when external 

chemicals act on the proteome. Graph theoretical tools have been quite powerful 

in such biochemical characterizations [3]. Moreover, it has been shown by Bal-

asubramanian [4–7] that tree pruning and other efficient topological techniques 

can be applied to characterize various trees such as phylogenetic trees, Cayley 

trees, and Bethe lattices through graph theoretical entities including their char-

acteristic polynomials, symmetries, entropies, and combinatorics of colorings of 

such trees. Moreover, such recursive and binary trees could be related to recursive 

relations in molecular shape analysis and recursive generation of Boolean hyper-

cubes that have been considered elsewhere [8–10]. Consequently, there are sev-

eral biological and biochemical applications of variations of phylogenetic trees 

such as X-trees. For example, in a scenario where there are interactions among 

certain vertices at a given level of the binary trees, one can model such inter-

actions through the use of X-trees that are considered here. These added edges 

or removed edges from the parent trees could then represent certain biochemical 

perturbations as described in the context of proteomic maps [3] or in quantify-

ing the effect of added interactions or an infected individual to an infection-free 

group in an epidemiological study or in quantifying toxicological responses and 

toxicity profiles.

As pointed out by Forster et  al. [2] the phylogenetic network that they con-

structed using 160 SARS-COV2 genomes, facilitated the evolution of the 

COVID-19 virus in different regions of the world and its relationship to the 

assumed source from the bat. Hence they were able to characterize the phyloge-

netic trees and facilitate delineation into different regions of the world in order 

to characterize various mutations through the evaluation of the virus in differ-

ent regions of the world. Such detailed graph theoretical pictures can facilitate 



701

1 3

Journal of Mathematical Chemistry (2021) 59:699–718 

tracing infection pathways as well as mutation pathways for the virus so that 

one could come up with mitigation strategies. Control strategies for the spread 

of infectious diseases can be designed by mathematical modelling in epidemiol-

ogy [11–14]. In the case of epidemic diseases such as COVID-19, an individual 

infected with the virus turns out to be the root cause of spreading it to a group 

of disease-free individuals in his neighbourhood. This invasion process affects 

a large population due to the contacts between this group of infectious individu-

als and a huge susceptible pool of individuals. In this way, these microorganisms 

imitate by parting themselves on human bodies, and subsequently ascend to the 

tree based structures in scientific displaying [15]. Graph theoretical analysis can 

facilitate detection of root node and intermediate nodes that affect the topology of 

the network, depending on the epidemic [16]. Consequently, several investigators 

have considered applications of network theory for a variety of such infections 

[17–19]. Several topological indices including eccentric index have been devel-

oped and applied to characterize such systems [20] as such indices are invariant 

to labelling of vertices or edges. In the current Paper II, we obtain various topo-

logical indices including the eccentricity indices for phylogenetic and X-trees that 

were not considered in Paper I.

All mathematical preliminaries and definitions have been introduced in the 

accompanying Paper I. Hence readers are referred to Paper I for definitions and pre-

liminaries [1].

2  Results and discussion

An X-tree XT(l) is obtained from the complete binary tree T
l
 on 2l+1

− 1 vertices, 

and joining all the vertices in each level i from left to right, 1 ≤ i ≤ l . The graph 

XT(4) is given in Fig. 1.

level 0

level 1

level 2

level 3

level 4

Fig. 1  The X-tree network XT(4)
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We have previously pointed out in Paper I [1] errors made by Gao et al. [21] in the 

computations of various topological indices and enumerated various steps in pointing 

out the errors. Table 1 shows all of the indices for the X-trees that we have obtained in 

the present work by correcting the previous results of Gao et al. [21] and the results 

computed from TopoChemie-2020 [22], a suite of Fortran’95 codes to compute all of 

the topological indices.

The corrected Theorem 2.1 for the topological indices follows.

Table 1  Results obtained for l-level X-tree network XT(l), with the computer code compared with the 

results from the expressions derived here and those from Ref. [21]

Index Dimension l TopoChemie-2020 From expressions 2.1 Ref. [21]

GA4 l = 3 24.880794488885737 24.8807 28.8397

l = 4 55.86286296173727 55.8629 105.6604

l = 5 118.83638101813052 118.8363 316.4091

l = 6 245.79225807606497 245.7922 837.0146

Zg4 l = 3 190 190 218

l = 4 626 626 1126

l = 5 1776 1776 4344

l = 6 4616 4616 14,058

Π
∗

4
 l = 3 7.318411747025515E + 21 7.3184E + 21 78,382,080

l = 4 2.2951471834362743E + 58 2.2952E + 58 2.51612254E21

l = 5 1.1636771331250612E + 139 1.1637E + 139 4.39862658E46

l = 6  + Inf  + Inf 1.43477106E87

Zg6 l = 3 368 368 416

l = 4 1789 1789 3042

l = 5 6757 6757 15,177

l = 6 22,002 22,002 60,158

Π
∗

6
 l = 3 3.7439062426244873E + 28 3.7439e + 28 2,239,488,000

l = 4 7.706715809924782E + 82 7.7067e + 82 1.17568345E26

l = 5 2.2091018217754644E + 206 2.2092e + 206 5.52706905E57

l = 6  + Inf  + Inf 4.1859e + 107

ABC5Π l = 3 0.000008336974857890423 8.3426e-06 228.5933044733

l = 4 1.7793072547793842E-15 1.7330e-15 17,723,692.8320256

l = 5 3.384275421412989E-38 3.3876e-38 3.84834506E16

l = 6 7.635281023554304E-89 7.6237e-89 7.19232813E31
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Theorem 2.1 (Corrected Theorem 2 of [21]) Let XT(l) be the l – level X-tree with 

l ≥ 3 . Then we have the following:

Proof First, we partition the edge set of XT(l) as follows:

• E
ll
= {e = st ∈ E(XT(l))|�(s) = �(t) = l}; n

ll
= |
|Ell

|
| = 6;

• E(l+a)(l+a) = {e = st ∈ E(XT(l))|�(s) = �(t) = l + a}; n(l+a)(l+a)

=
|
|
|
E(l+a)(l+a)

|
|
|
= 3 ⋅ 2a − 3, where a ∈ [l − 2];

• E(l+a−1)(l+a) = {e = st ∈ E(XT(l))|�(s) = l + a − 1 and �(t) = l + a}

and n(l+a−1)(l+a) =
|
|
|
E(l+a−1)(l+a)

|
|
|
= 3(2a) + 2, where a ∈ [l − 2];

GA4(XT(l)) = 2l+1 − 3l + 4 + 2

l−2
�

a=1

(3 × 2a + 2)

√

(l + a − 1)(l + a)

2(l + a) − 1

+ 2
�

2l−1 + 2
�

√

(2l − 2)(2l − 1)

4l − 3
;

Zg4(XT(l)) = 16l × 2l − 22 × 2l − 3l2 − 7l + 30;

Π∗

4
(XT(l)) = 64l6 ×

l−2
�

a=1

(2(l + a))3⋅2
a−3 ×

l−2
�

a=1

(2(l + a) − 1)
3⋅2a+2 × (4l − 3)

2l−1+2

× (4l − 2)
2l−1−2

;

Zg6(XT(l)) =
173l

6
+ 44l × 2l + 39 × 2l −

5l2

2
−

7l3

3
+ 16l2 × 2l − 41;

Π∗

6
(XT(l)) = l12 ×

l−2
�

a=1

(l + a)6(2
a−1) ×

l−2
�

a=1

((l + a − 1)(l + a))3⋅2
a+2

×
�

4l2 − 6l + 2
�(2l−1+2)

× (2l − 1)
2(2l−1−2)

;

Zg4(XT(l), x) =

l−2
�

a=1

3(2a − 1)x2(l+a) +

l−2
�

a=1

(3 × 2a + 2)x2(l+a)−1

+
�

2l−1 + 2
�

x4l−3 +
�

2l−1 − 2
�

x4l−2 + 6x2l;

Zg6(XT(l), x) =

l−2
�

a=1

3(2a − 1)x(l+a)2 +

l−2
�

a=1

(3 × 2a + 2)x(l+a−1)(l+a)

+
�

2l−1 + 2
�

x(2l−2)(2l−1) +
�

2l−1 − 2
�

x(2l−1)2 + 6xl2 ;

ABC5Π(XT(l)) =

l−2
�

a=1

�
√

2(l + a) − 2

(l + a)

�3(2a−1)

×

l−1
�

a=1

�

2(l + a) − 3

(l + a − 1)(l + a)

�3⋅2a−1+1

×

�

4l − 5

(2l − 2)(2l − 1)

�2l−2+1

×

�

2
√

l − 1

2l − 1

�2l−1−2

×

�
√

2l − 2

l

�6

.
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• 
E(2l−2)(2l−1) = {e = st ∈ E(XT(l))|�(s) = 2l − 2 and �(t) = 2l − 1} and

n(2l−2)(2l−1) =
|||E(2l−2)(2l−1)

||| = 2
(
2l−2

)
+ 2;

• 
E(2l−1)(2l−1) = {e = st ∈ E(XT(l))|�(s) = �(t) = 2l − 1} and n(2l−1)(2l−1) =

|
|
|
E(2l−1)(2l−1)

|
|
|
= 2(2l−2) − 2, where a = l − 2.

By the definition, we have

GA4(XT(l)) = 6 +

l−2
�

a=1

(3 ⋅ 2a − 3) +

l−2
�

a=1

(3 ⋅ 2a + 2)

�

2
√

(l + a − 1)(l + a)

2l + 2a − 1

�

+
�

2 ⋅ 2l−2 + 2
�2

√

(2l − 2)(2l − 1)

4l − 3
+
�

2 ⋅ 2l−2 − 2
�

= 2l+1 − 3l + 4 + 2

l−2
�

a=1

(3 × 2a + 2)

√

(l + a − 1)(l + a)

2(l + a) − 1

+ 2
�

2l−1 + 2
�

√

(2l − 2)(2l − 1)

4l − 3
;

Zg4(XT(l)) = 12l +

l−2
�

a=1

(3 ⋅ 2a − 3).2.(l + a)

+

l−2
�

a=1

(3 ⋅ 2a + 2)(2l + 2a − 1) +
�

2 ⋅ 2l−2 + 2
�

(4l − 3)

+
�

2 ⋅ 2l−2 − 2
�

(4l − 2)

= 16l × 2l − 22 × 2l − 3l2 − 7l + 30;

Π∗

4
(XT(l)) = (2l)6 ×

l−2
�

a=1

(2(l + a))(3⋅2
a−3) ×

l−2
�

a=1

(2(l + a) − 1)(
3⋅2a+2)

× (4l − 3)(
2⋅2l−2+2) × (4l − 2)(

2⋅2l−2−2)

= 64l6 ×

l−2
�

a=1

(2(l + a))3⋅2
a−3 ×

l−2
�

a=1

(2(l + a) − 1)
3⋅2a+2

× (4l − 3)
2l−1+2 × (4l − 2)

2l−1−2
;

Zg6(XT(l)) = 6l2 +

l−2
�

a=1

(3 ⋅ 2a − 3).(l + a)2

+

l−2
�

a=1

(3 ⋅ 2a + 2)(l + a − 1)(l + a)

+
�

2 ⋅ 2l−2 + 2
�

(2l − 2)(2l − 1) +
�

2 ⋅ 2l−2 − 2
�

(2l − 1)(2l − 1)

=
173l

6
+ 44l × 2l + 39 × 2l −

5l2

2
−

7l3

3
+ 16l2 × 2l − 41;

 

Proceeding along the same lines, we prove the remaining equations.
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3  Certain distance and degree based topological indices of X‑trees 
and phylogenetic trees.

In this section, we compute certain distance and degree based topological indices of 

X-tree, and phylogenetic trees that have not been obtained earlier.

3.1  X-tree network

In this section, we compute the first Zagreb, second Zagreb, and atom bond con-

nectivity index of the l-level X-tree network XT(l), l ≥ 2.

Theorem 3.1.1 Let XT(l), l ≥ 2 be the l-level X-tree network. Then the first Zagreb 

index,

Proof First, we partition the vertex set of XT(l) as follows:

By the definition, we have

Theorem 3.1.2 Let XT(l), l ≥ 2 be the l-level X-tree network. Then the atom bond 

connectivity index

M
1
(XT(l)) = 34 × 2

l − 18l − 38.

P
1
=
{

v|d(v) = 2} and ||P1
|| = 3.

P
2
= {v|d(v) = 3} and ||P2

|| = 2
l − 2.

P
3
=
{

v|d(v) = 4} and ||P3
|| = 2(l − 1).

P
4
=
{

v|d(v) = 5} and ||P4
|| =2

l+1 − 2
l − 2l.

M
1(XT(l)) = (3)22 +

(

2
l − 2

)

3
2 + (2(l − 1))42 + (2l+1 − 2

l − 2l)52

= 34 × 2
l − 18l − 38.

ABC(XT(l)) = 1.2991221987(2l) + 0.56568542495(2l+1) − 0.36862119001(l) − 2.17205557615.
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Proof First, we partition the edge set of XT(l) as follows:

By the definition, we have

Theorem  3.1.3 Let XT(l), l ≥ 2 be the X-tree network of l-level. Then the second 

Zagreb index M
2(XT(l)) = 25 × 2l+1−63 × l + 24 × 2l−77.

The proof runs analogous to that of Theorem 3.1.2.

E
23

=
{

e = uv ∈ E(XT(l))|d(u) = 2 and d(v) = 3} and ||E23
|| = 1.

E
24

=
{

e = uv ∈ E(XT(l))|d(u) = 2 and d(v) = 4} and ||E24
|| = 2 .

E
32

=
{

e = uv ∈ E(XT(l))|d(u) = 3 and d(v) = 2} and ||E32
|| = 1.

E
33

=
{

e = uv ∈ E(XT(l))|d(u) = 3 and d(v) = 3} and ||E33
|| = 2

l − 3.

E
42

=
{

e = uv ∈ E(XT(l))|d(u) = 4 and d(v) = 2} and ||E42
|| = 2 .

E
43

=
{

e = uv ∈ E(XT(l))|d(u) = 4 and d(v) = 3} and ||E43
|| = 2.

E
44

=
{

e = uv ∈ E(XT(l))|d(u) = 4 and d(v) = 4} and ||E44
|| = 2l − 3 .

E
45

=
{

e = uv ∈ E(XT(l))|d(u) = 4 and d(v) = 5} and ||E45
|| = 3l − 6 .

E
53

=
{

e = uv ∈ E(XT(l))|d(u) = 5 and d(v) = 3} and ||E53
|| = 2

l − 4.

E
54

=
{

e = uv ∈ E(XT(l))|d(u) = 5 and d(v) = 4} and ||E54
|| = l − 2.

E
55

=
{

e = uv ∈ E(XT(l))|d(u) = 5 and d(v) = 5} and ||E55
|| = 2

l+1 − 7l + 6 .

ABC(XT(l)) =
∑

e∈E23

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E24

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E32

√

d(u) + d(v) − 2

d(u)d(v)

+
∑

e∈E33

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E42

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E43

√

d(u) + d(v) − 2

d(u)d(v)

+
∑

e∈E44

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E45

√

d(u) + d(v) − 2

d(u)d(v)

+
∑

e∈E53

√

d(u) + d(v) − 2

d(u)d(v)
+

∑

e∈E54

√

d(u) + d(v) − 2

d(u)d(v)

+
∑

e∈E55

√

d(u) + d(v) − 2

d(u)d(v)
= 1

√

1

2
+ 2

√

1

2
+ 1

√

1

2
+ (2l − 3)

(

2

3

)

+ 2

√

1

2
+ 2

√

5

12
+ (2l − 3)

√

3

8
+ (3l − 6)

√

7

20

+ (2l − 4)

√

6

15
+ (l − 2)

√

7

20
+
(

2
l+1 − 7l + 6

)

√

8

25

= 1.2991221987 (2l) + 0.56568542495(2l+1) − 0.36862119001 (l) − 2.17205557615.
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Theorem 3.1.4 Let XT(l), l ≥ 2 be the l-level X-tree network. Then the PI index

Proof Let A = {e = uv|u in level i and v in level i + 1, 0 ≤ i ≤ l − 1} , B = {e = uv|u and

v in the same level i, 1 ≤ i ≤ l} , and let j be the position of the edge from left most 

edge to right most edge in level i.

Case (i): e ∈ A

 If i = 0, then it is easy to verify that n(u) = 1 and n(v) = 2l
− 1. Thus

For any i, j, 1 ≤ i ≤ l − 1 , and 3 ≤ j ≤ 2i − 1, n(u) = 2
(

2l−i − 1
)

 and 

n(v) =
(

2
l+1 − 1

)

− 6
(

2
l−i − 1

)

. Thus,

For any i, j, 1 ≤ i ≤ l − 1 , and j = 1, n(u) =
(

2l−i − 1
)

 and 

n(v) =
(

2
l+1 − 1

)

− 3
(

2
l−i − 1

)

. Thus

For any i, j, 1 ≤ i ≤ l − 1, and j = 2i or 2, n(u) = 2
(

2l−i − 1
)

and n(v) =
(

2l+1 − 1
)

− 5
(

2l−i − 1
)

. 

Thus

Hence by Eqs. (1)–(3), and (4), we get

Case (ii): e ∈ B

If i = 1 , then it is easy to verify that n(u) = n(v) = 2
l − 1. Further there are l similar 

edges in the edge subset El such that n(u) = n(v) = 2
l − 1. Thus

PI(XT(l)) = 2
2l+2 + 2

l
[

4l
2 − 18l + 16

]

+ 4l
2 + 2l − 20.

(1)n(u) + n(v) = 2
l

(2)n(u) + n(v) =
(

2
l+1 − 1

)

− 4
(

2
l−i − 1

)

(3)n(u) + n(v) =
(

2
l+1 − 1

)

− 2
(

2
l−i − 1

)

(4)n(u) + n(v) =
(

2
l+1 − 1

)

− 3
(

2
l−i − 1

)

(I)

PI
1
(XT(l)) = 2

⎡⎢⎢⎣
2

l +

2
i−1�
j=3

[
�
2

l+1 − 1
�
− 4

�
2

l−i − 1
�
] +

�
2

l+1 − 1
�
− 2

�
2

l−i − 1
�
+ 2

��
2

l+1 − 1
�
− 3

�
2

l−i − 1
��⎤⎥⎥⎦

= 2
l+1 + 2

l
�
2

l+2 − 8l + 14
�
− 8l − 20
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If i = 2, then n(u) =
(

2
l−1 − 1

)

 and n(v) = 2
l+1 − 2

l−1 − 3. Then 

n(u) + n(v) = 2
l+1 − 4. Further there are l − 1 similar edges in the subset El−1 such 

that n(u) + n(v) = 2
l+1 − 4. Thus

For any i, j, 3 ≤ i ≤ l , and 3 ≤ j ≤ 2i−2, n(u) = n(v) = 4
(

2
l−i+1 − 1

)

 . Further there are 

(l − i + 1) similar edges in the subset  El−i+1 such that n(u) = n(v) = 4
(

2
l−i+1 − 1

)

 . 

Thus

For any  i, j, 3 ≤ i ≤ l , and j = 1, n(u) =
(

2l−i+1 − 1
)

 and n(v) = 4
(

2
l−i+1 − 1

)

 . 

Further there are (l − i + 1) similar edges in the subset  El−i+1 such that 

n(u) =
(

2
l−i+1 − 1

)

and n(v) = 4
(

2
l−i+1 − 1

)

 . Thus

For any i, j, 3 ≤ i ≤ l , and j = 2, n(u) = 3
(

2l−i+1 − 1
)

 and n(v) = 4
(

2
l−i+1 − 1

)

 . 

Further there are (l − i + 1) similar edges in  El−i+1 such that 

n(u) = 3
(

2
l−i+1 − 1

)

and n(v) = 4
(

2
l−i+1 − 1

)

. Thus

Hence by Eqs. (5)–(8) and (9), we get

(5)

∑

uv∈El

(n(u) + n(v)) = l(2l+1 − 2)

(6)

∑

uv∈El−1

(n(u) + n(v)) = (l − 1)(2l+1 − 4)

(7)

∑

uv∈El−i+1

(n(u) + n(v)) = (l − i + 1) × 8 ×
(

2
l−i+1 − 1

)

(8)

∑

uv∈El−i+1

(n(u) + n(v)) = (l − i + 1) × 5 ×
(

2
l−i+1 − 1

)

(9)

∑

uv∈El−i+1

(n(u) + n(v)) = (l − i + 1) × 7 ×
(

2
l−i+1 − 1

)

(II)

PI
2(XT(l)) = l(2l+1 − 2) + 2

�
(l − 1)

�
2

l+1 − 4
��

+ 2

l�
i=3

⎡⎢⎢⎣

⎛⎜⎜⎝

2i−2�
j=3

(l − i + 1) × 8 ×
�
2

l−i+1 − 1
�⎞⎟⎟⎠

+ (l − i + 1)

×5 ×
�
2

l−i+1 − 1
�
+ (l − i + 1) × 7 ×

�
2

l−i+1 − 1
��

= 2l
�
2l + 2l × 2

l − 5 × 2
l + 5

�
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From (I) and (II), we have

Theorem 3.1.5 Let XT(l), l ≥ 2 be the l-level X-tree network. Then the Szeged index

Proof Let A = {e = uv|u in level i and v in level i + 1, 0 ≤ i ≤ l − 1} , B 

= {e = uv|u and v in the same level i, 1 ≤ i ≤ l} , and j be the position of the edge 

from left most edge to right most edge in level i.

Case (i): e ∈ A

If i = 0, then it is easy to verify that n(u) = 1 and n(v) = 2
l − 1. Thus

For any i, j, 1 ≤ i ≤ l − 1 , and 3 ≤ j ≤ 2i − 1, n(u) = 2
(

2l−i − 1
)

 and 

n(v) =
(

2
l+1 − 1

)

− 6
(

2
l−i − 1

)

. Thus

For any i, j, 1 ≤ i ≤ l − 1 , and 

j = 1, n(u) =
(

2l−i − 1
)

and n(v) =
(

2l+1 − 1
)

− 3
(

2l−i − 1
)

 . Thus

For any i, j, 1 ≤ i ≤ l − 1 , and  

j = 2i or 2, n(u) = 2
(

2l−i − 1
)

and n(v) =
(

2l+1 − 1
)

− 5
(

2l−i − 1
)

. Consequently, 

Hence by Eqs. (10)–(12), and (13), we get

PI(XT(l)) = PI
1
(XT(l)) + PI

2
(XT(l))

= 2
2l+2 + 2

l
[

4l
2 − 18l + 16

]

+ 4l
2 + 2l − 20.

Sz(XT(l)) =8 × 2
l × l −

775 × 22l

18
− 17l + 58 × 2

l + 16 × l
2 +

79 × 22l × l

6

−
76

9
+ 2

l
∑

i=3

(l − i + 1) × 16 ×
(

2
l−i+1 − 1

)2
×
(

2
i−2 − 2

)

(10)n(u) × n(v) = 2
l − 1

(11)n(u) × n(v) =
(

2 × 2
l−i − 2

)(

2
l+1 − 6 × 2

l−i + 5
)

(12)n(u) × n(v) =
(

2
l−i − 1

)(

2
l+1 − 3 × 2

l−i + 2
)

(13)n(u) × n(v) =
(

2 × 2
l−i − 2

)(

2
l+1 − 5 × 2

l−i + 4
)
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Case (ii): e ∈ B

If i = 1, then it is easy to verify that n(u) = n(v) = 2
l − 1. Further there are l similar 

edges in  El such that n(u) = n(v) = 2
l − 1. Thus

If i  = 2, then n(u) =
(

2
l−1 − 1

)

and n(v) = 2
l+1 − 2

l−1 − 3. Then 

n(u) × n(v) =
(

2
l−1 − 1

)

× (2l+1 − 2
l−1 − 3). Further there are l − 1 similar edges in  

El−1 such that n(u) × n(v) =
(

2
l−1 − 1

)

× (2l+1 − 2
l−1 − 3). Thus

For any i, j, 3 ≤ i ≤ l, and 3 ≤ j ≤ 2i−2, n(u) = n(v) = 4
(

2
l−i+1 − 1

)

. Further there 

are (l − i + 1) similar edges in  El−i+1 such that n(u) = n(v) = 4
(

2
l−i+1 − 1

)

. Thus

For any  i, j, 3 ≤ i ≤ l , and j = 1, n(u) =
(

2l−i+1 − 1
)

and n(v) = 4
(

2l−i+1 − 1
)

. 

Further there are (l − i + 1) similar edges in  El−i+1 such that 

n(u) =
(

2
l−i+1 − 1

)

and n(v) = 4
(

2
l−i+1 − 1

)

. Thus

(III)

Sz
1(XT(l)) = 2

⎡
⎢⎢⎣
�
2

l − 1
�
+

2i−1�
j=3

��
2 × 2

l−i − 2
��

2
l+1 − 6 × 2

l−i + 5
��

+
�
2

l−i − 1
��

2
l+1 − 3 × 2

l−i + 2
�
+ 2

��
2 × 2

l−i − 2
��

2
l+1 − 5 × 2

l−i + 4
���

= 24l −
106 × 22l

3
+ 48 × 2

l × l − 44 × 2
l + 8 × 2

2l × l +
238

3

(14)

∑

uv∈El

(n(u) × n(v)) = l(2l − 1)2

(15)

∑

uv∈El−1

(n(u) × n(v)) = (l − 1) ×
(

2
l−1 − 1

)

× (2l+1 − 2
l−1 − 3)

(16)

∑

uv∈El−i+1

(n(u) × n(v)) = (l − i + 1) × (16) ×
(

2
l−i+1 − 1

)2

(17)

∑

uv∈El−i+1

(n(u) × n(v)) = (l − i + 1) ×
(

2
l−i+1 − 1

)

× 4
(

2
l−i+1 − 1

)
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For any i, j, 3 ≤ i ≤ l, and j = 2, n(u) = 3
(

2l−i+1 − 1
)

and n(v) = 4
(

2l−i+1 − 1
)

. 

Further there are (l − i + 1) similar edges in  El−i+1  such that 

n(u) = 3
(

2
l−i+1 − 1

)

and n(v) = 4
(

2
l−i+1 − 1

)

. Thus

Hence by Eqs. (14)–(17) and (18), we get

(18)

∑

uv∈El−i+1

(n(u) × n(v)) = (l − i + 1) × 3 ×
(

2
l−i+1 − 1

)

× 4 ×
(

2
l−i+1 − 1

)

(IV)

Sz
2
(XT(l)) = l(2l − 1)2 + 2[(l − 1) × (2l−1 − 1) × (2l+1 − 2

l−1 − 3)]

+ 2

⎡
⎢⎢⎣

l�
i=3

⎡
⎢⎢⎣

2
i−2�

i=3

[(l − i + 1) × (16) × (2l−i+1 − 1)
2

]

⎤
⎥⎥⎦
+ (l − i + 1)

×(2l−i+1 − 1) × 4(2l−i+1 − 1) + (l − i + 1) × 3 × (2l−i+1 − 1) × 4 × (2l−i+1 − 1)
�

= 102 × 2
l −

139 × 2
2l

18
− 40 × 2

l × l − 41 × l + 16 × l
2 +

31 × 2
2l × l

6
−

790

9

+ 2

l�
i=3

(l − i + 1) × 16 ×
�
2

l−i+1 − 1
�2

×
�
2

i−2 − 2
�

Table 2  Results obtained for the l-level X-tree network XT(l) with the computer code compared with the 

results from the expressions in Theorems 3.1.1–3.1.5

Index Dimension l TopoChemie-2020 From expressions 3.1.1–3.1.5

ABC(XT(l)) l = 3 16.16602524259959 16.16602524262

l = 4 35.2413484413769 35.24134844141

l = 5 73.76061602894474 73.760616029

l = 6 151.1677723940934 151.16777239419

M
1
(XT(l)) l = 3 180 180

l = 4 434 434

l = 5 960 960

l = 6 2030 2030

M
2
(XT(l)) l = 3 326 326

l = 4 855 855

l = 5 1976 1976

l = 6 4281 4281

PI(XT(l)) l = 3 262 262

l = 4 1204 1204

l = 5 5018 5018

l = 6 19,848 19,848

Sz(XT(l)) l = 3 513 513

l = 4 4144 4144

l = 5 28,111 28,111

l = 6 167,790 167,790
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From (III) and (IV), we have

Remark 3.1.6 The results obtained from TopoChemie-2020 are shown in Table 2 for 

comparison with the results obtained from Theorems 3.1.1–3.1.5.

3.2  Phylogenetic tree network

For any non-negative integer l, the complete k-ary tree of level l, denoted by Tk

l
 , 

is the k-ary tree (a tree in which each node has no more than k children), where 

each internal vertex has exactly k children and all the leaves are at the same level. 

Clearly, a complete k-ary tree Tk

l
 has l levels and level i, 0 ≤ i ≤ l contains ki ver-

tices. Thus Tk

l
 has exactly 

k
l+1

−1

k−1
 vertices. The complete k-ary tree when all vertices 

have the same degree (except terminal vertices)is also called as Cayley tree network 

Sz(XT(l)) = Sz
1(XT(l)) + Sz

2(XT(l))

= 8 × 2
l × l −

775 × 22l

18
− 17l + 58 × 2

l + 16 × l
2 +

79 × 22l × l

6
−

76

9

+ 2

l
∑

i=3

(l − i + 1) × 16 ×
(

2
l−i+1 − 1

)2
×
(

2
i−2 − 2

)

.

Fig. 2  The complete binary (2-ary) tree T2

10
 of level 10
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or phylogenetic tree networks. For illustration the complete binary (2-ary) tree of 

level 10, T2

10
 is given in Fig. 2. In this section, we consider complete binary tree T2

l
 of 

level l for further studies and denote it as T
l
.

Theorem  3.2.1 Let T
l
 be the complete binary tree network, l ≥ 2. Then the atom 

bond connectivity index

Proof First, we partition the edge set of T
l
 as follows:

By the definition, we have

Theorem  3.2.2 Let T
l
 be the complete binary tree network, l ≥ 2. Then the first 

Zagreb index M
1

(

T
l

)

= 10 × 2
l
− 14.

Proof First, we partition the vertex set of T
l
 as follows:

By the def init ion,  we have

ABC
�

T
l

�

= 2

�

3

6
+ 2

l

�

2

3
+

�

2
l
− 2

2
�

.

√

4

3

E
23

=
{

e = uv∈E
(
T

l

)
|d(u) = 2 and d(v) = 3} and ||E23

|| = 2.

E
13

=
{

e = uv∈E
(
T

l

)
|d(u) = 1 and d(v) = 3} and ||E13

|| = 2
l
.

E
33

=
{

e = uv∈E
(
T

l

)
|d(u) = 3 and d(v) = 3}and ||E33

|| =
l−1∑

i=2

2
i
.

ABC
�

T
l

�

=
�

e∈E
23

�

d(u) + d(v) − 2

d(u)d(v)
+

�

e∈E
13

�

d(u) + d(v) − 2

d(u)d(v)

+
�

e∈E
33

�

d(u) + d(v) − 2

d(u)d(v)

= 2

�

3

6
+ 2

l

�

2

3
+
�

2
l − 2

2
�

.

√

4

3

P
1
=
{

v|d(v) = 2} and ||P1
|| = 1.

P
2
=
{

v|d(v) = 3} and ||P2
|| = 2

l − 2.

P
3
=
{

v|d(v) = 1} and ||P3
|| = 2

l
.

M
1

(

T
l

)

=
∑

v�P
1

(d(v))2 +
∑

v�P
2

(d(v))2 +
∑

v�P
3

(d(v))2

= 4 + 9
(

2
l − 2

)

+ 2
l

= 10 × 2
l − 14.
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Theorem 3.2.3 Let T
l
 be the complete binary tree network, l ≥ 2. Then the second 

Zagreb index M
2

(

T
l

)

= 12 × 2
l
− 24.

The proof runs analogous to that of Theorem 3.2.1.

The Szeged index has been extensively studied for a variety of graphs, and in fact 

Gutman and coworkers [23] have shown that the Szeged index is identical to the cel-

ebrated Wiener index for all trees, and thus for the phylogenetic binary trees consid-

ered here, the Szeged indices are the same as Wiener indices and the numerical results 

obtained from TopoChemie-2000 for W and Sz of binary trees confirmed this fact.

Theorem 3.2.4 Let T
l
, l ≥ 2 be the complete binary tree network of level l. Then the 

Szeged index

Proof First, we partition the edge set of T
l
 as follows:

 

E33 =

{

e = uv ∈ E
(
T

l

)
|d(u) = 3 and d(v) = 3, n(u) =

l−2∑

i=1

(2i+1 − 1) and

n(v) =

l−2�

i=1

��
2

l+1 − 1
�
−
�
2

i+1 − 1
��
�

and �
�E33

�
� =

l−2∑

i=1

(2l−i).

By the definition, we have
Sz
(

Tl

)

=

((

2
l
− 1

)

× 2
l
)

× 2 +

(

1 × 2
l+1

− 2
)

× 2
l

+

l−2
∑

i=1

((

2
i+1

− 1
)

×

((

2
l+1

− 1
)

−

(

2
i+1

− 1
)))

2
l−i

= 2
l+1

(

l + l × 2
l+1

− 4 × 2
l
+ 4

)

.

Theorem 3.2.5 Let T
l
, l ≥ 2 be the complete binary tree network of level l. Then the 

PI index.

Proof First, we partition the edge set of T
l
 as follows:

E23 =
{

e = uv∈E
(
Tl

)
|d(u) = 2, d(v) = 3, n(u) =

(
2l − 1

)
and n(v) =

(
2l
)}

and ||E23
|| = 2.

E13 =
{

e = uv∈E
(
T

l

)
|d(u) = 1 and d(v) = 3, n(u) = 1 and n(v) = 2l+1 − 2

}
and ||E13

|| = kl

E33 =

�
e = uv∈E

�
T

l

�
�d(u) = 3 and d(v) = 3, n(u) =

l−2∑
i=1

(2i+1 − 1) and

n(v) =
l−2∑

i=1

��
2

l+1 − 1
�
−
�
2

i+1 − 1
��
�

and �
�E33

�
� =

l−2∑

i=1

(2l−i)

Sz
(

Tl

)

= 2
l+1

(

l + l × 2
l+1

− 4 × 2
l
+ 4

)

.

E23 =
{

e = uv ∈ E
(
T

l

)
|d(u) = 2, d(v) = 3, n(u) =

(
2

l − 1
)

and n(v) =
(
2

l
)
}and ||E23

|| = 2.

E13 =
{

e = uv ∈ E
(
T

l

)
|d(u) = 1 and d(v) = 3, n(u) = 1 and n(v) = 2

l+1 − 2} and ||E13
|| =2

l
.

PI
(

T
l

)

= 4 × 2
2l
− 6 × 2

l
+ 2
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By the definition, we have
PI
(

T
l

)

=

((

2
l
− 1

)

+ 2
l
)

× 2 +

(

1 + 2
l+1

− 2
)

× 2
l

+

l−2
∑

i=1

((

2
i+1

− 1
)

+

((

2
l+1

− 1
)

−

(

2
i+1

− 1
)))

2
l−i

= 4 × 2
2l
− 6 × 2

l
+ 2

Theorem 3.2.6 Let T
l
, l ≥ 2 be the complete binary tree network of level l. Then the 

Schultz index

S
(

T
l

)

= 8l × 2
l
− 36 × 2

2l
+ 38 × 2

l
+ 16l × 2

2l
− 2.

Table 3  Results obtained for Phylogenetic Network Tl, with the computer code compared with the results 

from the expressions in Theorems 3.2.1–3.2.7

Index Dimension l TopoChemie-2020 From expressions 

3.2.1–3.2.7

ABC
(

T
l

)

l = 3 10.612852876461572 10.613

l = 4 22.478158857216716 22.478

l = 5 46.208770818727004 46.2088

M
1

(

T
l

)

l = 3 66 66

l = 4 146 146

l = 5 306 306

M
2

(

T
l

)

l = 3 72 72

l = 4 168 168

l = 5 360 360

Sz
(

Tl

)

l = 3 368 368

l = 4 2304 2304

l = 5 12,864 12,864

PI
(

T
l

)

l = 3 210 210

l = 4 930 930

l = 5 3906 3906

S
(

T
l

)

l = 3 1262 1262

l = 4 8286 8286

l = 5 47,550 47,550

GUT
(

T
l

)

l = 3 1066 1066

l = 4 7386 7386

l = 5 43,706 43,706



716 Journal of Mathematical Chemistry (2021) 59:699–718

1 3

Proof We partition the vertices (ordered pairs) of T
l
 as follows:

By the definition, we have

Theorem 3.2.7 Let T
l
, l ≥ 2 be the complete binary tree network of level l. Then the 

Gutman index

The proof runs analogous to that of Theorem 3.2.6.

Remark 3.2.8 The results obtained from TopoChemie-2020 are shown in Table 3 for 

comparison with the results obtained from Theorems 3.2.1–3.2.7.

4  Conclusion

The various recursive structures that we have considered in the present study are not 

only applicable to mitigation strategies for control of COVID-19 but also in a number of 

other applications such as neural networks in characterization of toxicity profiles [24], 

population dynamics, social or technological networks, genome networks, proteomics 

V11 = {(x, y)∕d(x) = d(y) = 1} and |
|V11

|
| = 2l−1

(
2l − 1

)

V12 = {(x, y)∕d(x) = 1 and d(y) = 2} and |
|V12

|
| = 2l

V13 = {(x, y)∕d(x) = 1 and d(y) = 3} and ||V13
|| = 2l

(
2l − 2

)

V23 = {(x, y)∕d(x) = 2 and d(y) = 3} and||V23
|| =

(
2l − 2

)
and

V33 = {(x, y)∕d(x) = d(y) = 3}and||V33
|
| =

(
2l − 2

)(
2l − 3

)

2
.

S
(

Tl

)

=
∑

(u,v)∈V11

(d(u) + d(v)) d(u, v) +
∑

(u,v)∈V12

(d(u) + d(v)) d(u, v) +
∑

(u,v)∈V13

(d(u) + d(v)) d(u, v)

+
∑

(u,v)∈V23

(d(u) + d(v)) d(u, v) +
∑

(u,v)∈V33

(d(u) + d(v)) d(u, v)

= (1 + 1)

[(

l
∑

i=1

2i × 2
i−1

)

2
l−1

]

+ (1 + 2)l × 2
l

+ (1 + 3)

[

l−1
∑

i=2

i−1
∑

j=1

(l − i + 2j)2l+j−1 +

l−1
∑

i=1

(l − i)2l +

l−1
∑

i=1

(l + i)2l+i−1

]

+ (2 + 3)

[

l−1
∑

i=1

i × 2
i

]

+ (3 + 3)

[

l−2
∑

k=1

[

l−1−k
∑

i=2

(

i−1
∑

j=1

(l − i + 2j − k)2l+j−k−1

)]

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l − i − k)2l−k

)

+

l−2
∑

k=1

(

l−1−k
∑

i=1

(l + i − k)2l+i−k−1

)

+

l−1
∑

i=1

(

i
∑

j=1

2j × 2
j−1

)

2
i−1

]

= 8l × 2
l − 36 × 2

2l + 38 × 2
l + 16l × 2

2l − 2.

Gut
(

T
l

)

= 8l × 2
l
− 40 × 2

2l
+ 46 × 2

l
+ 16l × 2

2l
− 6.
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networks, and metabolomics networks. Hence the tools developed here could have wide 

ranging applications in a number of disciplines. The various topological indices derived 

here serve to provide label-independent quantification measures for the networks, espe-

cially in measuring perturbations that would be caused by the addition of edges or ver-

tices which would then model for example, the effect of the introduction of an infected 

individual in a pool of uninfected individuals. In the present study we have considered 

various topological indices of such recursive tree structures and phylogenetic trees of 

interest in biochemical and epidemiological applications with the potentials to develop 

further variants in the future that would measure the causal effects of perturbations into 

a network through an infected individual. In addition to purely biological applications, 

recursive tree networks such as binary trees and higher order trees can provide topologi-

cal insights into molecular dendrimers and their relativistic extensions can be especially 

of future significance in structure–activity relations pertinent to metal–organic frame-

works for which relativistic effects could become important [25–29]. Recently we have 

applied such networks and their topological indices to pandemic networks relevant to 

COVID-19 [30].
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