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1. Introduction

Let D be the unit disk {z: z € C and |z| < 1}, A be the class of all functions analytic in D, satisfying
the conditions

f(0) =0 and f'(0) = 1.

Then each function f in A has the Taylor expansion

f(z):z+ianz“. (1.1)
n=2
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Further, by S we shall denote the class of all functions in A which are univalent in D. The koebe one-quarter
1
theorem [7] states that the image of D under every function f from S contains a disk of radius Z , Thus every

such univalent function has an inverse f ' which satisfies
' (f(z))=2z, (zeD)

and
1
f(f '(w)) = w, (Jw] < 1o(); 10(f) = 2 )

where
f'(w)y=w—-a,w’+(2a; —a,)w’ —(5a) —5a,a; +a, )w" +---

A function f(z) € A is said to be bi-univalent in D if both f(z) and f ~'(z) are univalent in D. If the
functions f and g are analytic in D, then f is said to be subordinate to g, written as

f(z)<gz), (zeD)

if there exists a Schwarz function w(z), analytic in D, with

w(0)=0 and |w(z)|]<1 (zeD)
such that f(z) = g(w(z)) (z € D).

Let X denote the class of bi-univalent functions defined in the unit disk D. Lewin [11] studied the
class of bi-univalent functions, obtaining the bound 1.51 for modulus of the second coefficients |a|.

4
Netanyahu [14] showed that max|a,| = g if f(z) € Z. Subsequently, Brannan and Clunie [4] conjectured that

|as| < V2 for f € =. Brannan and Taha [3] introduced certain subclasses of the bi-univalent function class X

similar to find familiar subclasses. Recently, many authors investigated bounds for various subclasses of bi-
univalent functions ([1], [6], [12], [15], [17]).

Not much is known about the bounds on the general coefficient |a,| for n > 4. In the literature, there are only a
few works determining the general coefficient bounds [a,| for the analytic bi-univalent functions ([2], [5], [9],
[10]). The coefficient estimate problem for each of [a,| (n € N/ {1, 2}; N = {1, 2,3, ...}) is still an open
problem.

Chebyshev polynomials have become increasingly important in numerical analysis, from both theoretical and

practical points of view. There are four kinds of Chebyshev polynomials. The majority of books and research
papers dealing with specific orthogonal polynomials of Chebyshev family, contain mainly results of
Chebyshev polynomials of first and second kinds T,(x) and U,(x) and their numerous uses in different
applications, see for example, Doha [8] and Mason [13].

The Chebyshev polynomials of the first and second kinds are well known. In the case of a real
variable x on [—1, 1], they are defined by

T.(X) = cos nb,
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sin(n+1)0
sin6

Un(x) =

2

where the subscript n denotes the polynomial degree and where x = cos 0.

Definition 1

1
ForO<A<1,le (E , 11, |t| < 1and t# 1 (tis real), a function f(z) € X is said to be in the class Cx(2,

[, v), if the following subordination hold

(1-0)[zf (2) + A% = 1) 2°"(2)] <H@D) = 1 (zeD)
[4(A— APz —t2)+(2A% = ) z(f (2) — f (t2)) T 1=2Iz+7°
+(2A%7 =31+ 1)(f(z) - {(t2))]
(1.2)
and
(1-0[wg' (W) +(2A% - D) w'g"(W)] < Hwl)= 1 (w D)
[4(A = A7) (W-tw)+(2A% — D)w(g'(w) — 12 (tw)) 120w+ w?
+H2A% =32 +1)(g(W) — g(tw))]
(1.3)

where g(w) =f “(w).

We note that if [ =cos o, o € (?n,gj,then
= sin(n +1)a
Hzl)=——— z" (zeD).
@) 1-21z+7 ZI: sin o ( )
Thus

H(z,l) =1+2cos 0z + (3cos’a—sin’a)z” +--- (zeD).

Following see, we write

H(zl) =1+U,(Dz+U,()z° +--- (zeD,le(-1,1)),
where

__ sin(narccos/)

NI

(n € N) are the chebyshev polynomials of the second kind. Also it is known that

U
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U,()=2U,,(h-U,,0,
and
U,()=2, U,D)=4"-1, U3(l)=813—4l,... (1.4)
The Chebyshev polynomials Ty(/), [ € [-1, 1], of the first kind have the generating function of the form

- 1-1z
T(z"=——— D).
HZ(; (D2 1-21z+7° (zeD)

However, the Chebyshev polynomials of the first kind T,(/) and the second kind U,(/) are well connected by
the following relationships

dT (1)
—n = l l 5
d/ U, ()

T,()=U,(O-1U, ),
2T,()=U, (D)~ U, , ().

In this paper, motivated by the earlier work of Srutha keerthi [16].

2. Coefficient bounds for the function class Cz(A, [, t)

Theorem 1

Let the function f(z) given by (1.1) be in the class Cxz(A, [, t). Then

22022 M+ 1)

|a2| S ,
A
| < 417 QA% —At+1)? . 21Q2°t —At+1)
T2 -u, (247 =30+ + 21247 = V)T B ’

A=412B(2/12t—m+1)_{(2‘“2[(2/1 =301 +2124° = 1)) m}’

[41% (42> =20+2) + (2 —u,[(2A> =3A+1) + 21227 =)

B=[(617 =3\+3) —u,[(2A% —3A+1)+3t(22° = V)]].
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Proof.
Letf € Cs(A, [, t). From (1.2) and (1.3), we have

(1-0)[zf(2)+ (2A* = 1) 2’ (2)]
[4(A = A°)z-t2)+(2A% = A)(f(z) - tf (t2))
+(22% =32 +1)(f(z) - f(t2))]
=1+ U,(O)w(2) + U,()w’(z) ++,

(2.1)
and
(1-D[wg'(w) +(2A° - D) w’g"(W)]
[4(A—A*)(W — tw)+(24° — Hw(g'(w) —1g'(tw))
+(2A? =32+ D(g(W) — g(tw))]
=1+ U, ([)v(w)+ UZ(Z)VZ(W) 4o,
(2.2)

for some analytic functions w, v such that w(0) = v(0) = 0 and |w(z)| < 1, |[v(z)| < 1 for all z € D. From the
equalities (2.1) and (2.2), we obtain that

(1-0[zf(2) + (2A* - 1) 2*f"(2)]
[4(1 — A (z-t2)+(2A* = D)(f(2) — tf (t2))
+(2A%* =341+ D(f(2) —f(t2))]

=1+U,())c,z+[U,()c, + U, ()} 12> +--,
(2.3)
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(1-lwg'(w) + (22" - Hw’g"(w)]
[4(2 = A")(W = tw)+(2A4” = Dw(g'(w) —1g'(tw))
+2A* =32 +1)(g(w) - g(tw))]

=1+U,(DHd,w +[U,())d, + U, (Dd; Iw?> +---.

It is fairly well-known that if |w(z)] = |eiz + c7°

[v(w)| = |dyw + dy w2+ dsw’ + .| <1, z, w € D, then

le|<1, VjeN.

It follows from (2.3) and (2.4) that

[2—u,((QA* =3A+1)+2t(2A4° —1))]
QA% —At+1)

a, =U,()c,,

Ba, Ca;
QA=A+ (2%t —At+])?

=U,()c, +U,(Dc;,

C[2-u,(QA° =301 +21(2247 = V)]
QA —At+])

a,=U,(Dd,

B(2aj-a,) Ca;
QA t=M+1) A%t =At+1)’

=U,(Dd, + U, (Dd;, (2.8)

Where

2.4

(2.5)

(2.6)

2.7)

C ={Q2—u,[QA =30+1)+2:22* = WD[2Q2A" = D[l +1u,]+u, (227 =30+1)]}.

From (2.5) and (2.7) we obtain

and

22—, (A =30H1)+ 26227 =1)]
220, (@A —3M D+ 2CA =W 2 _ 22 4 a2y,
QA —At+1)

2.9)

(2.10)

and
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By adding (2.6) and (2.8),we get

2Ba; 2Ca}

- =U,( d,)+U,(D(c; +d)), 2.11
Qr—ar D) @Rty O U0 +d) @1

By using (2.10) inequality (2.11), we have

2[B2A* —At+]) —Cla;  2U,(D[2—-u,((24° =3A+1) +2t22° —1)J’a;
QA% —At+1)? Ul (DQRAt—At+1)?

=U,()(c, +d,).
(2.12)

From (1.4) and (2.12) we get

22022 =M+ 1)
1A

|a2|£

b

Next, in order find the bound on |as|, by subtracting (2.8) from (2.6), we obtain

23@3——213)_ _ 2 0
(212t—7\t+1)_U1(l)(02 d,)+U,()(c; —=d)).

(2.13)

Then, in view of (2.9) and (2.10), we have from (2.13)

B U (D)(c; +d7)(2A% —At+1)’ Y (I)(c, —d,)(2A°t —At+1)
P 202—u, (242 =3+ + 26227 - )T 2B '

Notice that (1.4), we get

| < 417 QA t —At+1)? . 212°t = At+1)
T2 -u, (A% =30+ + 26247 =) B ‘

3. Fekete-Szego inequalities for the function class Cx(A, [, t)

Theorem 2

Let f given by (1.1) be in the class Cs(A, [, t) and p € R. Then
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QA —At+1)

i B ; for |u—1|£ 1B
‘33 - uaz‘ S 5
8P [1—p| (A%t —At+1)
; for |u—1|2 .
A 41°B
Proof.
From (2.12) and (2.13)

U (DQRAt=At+1)’(c, +d,)
22U (D[BRA* =M+1) —C]-2U,(D[2—-u,((2A° =3x+1)+2t2A° =0T
L Ui, —d,)(2A% —At+1)
2B

=U,(H(2A°t —M+1)Kh(u) +$jc2 + (h(u) —%jdz}

a,—pa; = (1-p)

where

(1-pU; (DA t—At+1)

hik) = 2U2(D[BQA> —At+]) —Cl-2U, (D2 —u, (A% =34+1) + 26227 = W)

Then , in view of (1.4), we conclude that

217t = t+1)
B

41 |h@w)| ()| > %.

1
0<|h@)|<—
‘as _Hag‘ < 2B

4. Conclusions

A modest attempt has been made in this report to study certain class of analytic functions and
Sakaguchi type functions on the open unit disk . Introduced new Subclasses of analytic univalent functions in

1
the class Cx(A, [, t) and by selecting the values(/ € (E , 1], 0< A <1 and [t<1, t#1), we used the Chebyshev

polynomial expansions to provided estimates for the initial coefficients of bi-univalent Sakaguchi type
functions in Cs(A, [, t).
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