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Abstract 

Combinatorial properties have become more and more important recently in the study of reliability, fault tolerance, 
randomized routing, and transmission delay in interconnection networks. In this paper, we prove that hypertrees are 
planar. We also discuss certain combinatorial properties of root-fault hypertrees. 
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1. Introduction 

     Combinatorial properties have become more and more important recently in the study of reliability, fault 
tolerance, randomized routing, and transmission delay in interconnection networks 1. Reliability and efficiency are 
important criteria in the design of interconnection networks. Connectivity is a widely used measure for network 
fault-tolerance capacities, while diameter determines routing efficiency along individual paths. In practice, we are 
interested in high-connectivity, small-diameter networks. Recently, the w -wide diameter, -fault diameter 
and the -Rabin number have to measure network reliability and efficiency 2. 
     The distance  form from a vertex  to another vertex  in a network  is the minimum number of edges 
of a path from  to . The diameter  of a network  is the maximum distance from one vertex to another. The 
connectivity  of a network  is the minimum number of vertices whose removal results in a disconnected or 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 3rd International Conference on Recent Trends in Computing 2015 
(ICRTC-2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.393&domain=pdf


1097 R. Sundara Rajan et al.  /  Procedia Computer Science   57  ( 2015 )  1096 – 1103 

trivial network. Accoding to Menger’s theorem, there are at least  (internally) vertex-disjoint paths from a vertex  
to another vertex  in a network of connectivity  3. 
     The classical approach to study routing in interconnection networks is to find the shortest path between the 
sending station and the receiving station. Whenever some stations are faulty on the path between the sending station 
and the receiving station, the management protocol has to find a way to bypass those faulty stations and set up a new 
path between them. Similarly, if this new path is disconnected again, a third path needs to be set up, if it is possible 4 
. In this context, diameter is the measurement for maximum transmission delay and connectivity is a good parameter 
to study the tolerance of the network on occasions when nodes fail. Fault tolerant interconnection networks can be 
found in 3. 
     For a graph (network)  with connectivity , the parameters -wide diameter ,  –fault 
diameter  and the Rabin number for any arise from the study of parallel routing, fault-
tolerant systems and randomized routing respectively 5, 6, 7, 8. Due to the widespread use of reliable, efficient and 
fault-tolerant networks, these three parameters have been the subject of extensive study over the past decade 5. 
     In 1994, Chen et al. determined the wide diameter of the cycle prefix network 9. In 1998, Liaw et al. found fault-
tolerant routing in circulant directed graphs and cycle prefix networks 10. The line connectivity and the fault 
diameters in pyramid networks were studied by Cao et al. in 1999 4. In the same year Liaw et al. determined the 
Rabin number and wide diameter of butterfly networks 2, 7. In 2005, Liaw et al. found the wide diameters and Rabin 
numbers of generalized folded hypercube networks 11. In 2009, Jia and Zhang found the wide diameter of Cayley 
graphs of , the cyclic group of residue classes modulo  and they proved that the -wide diameter of the Cayley 
graph Cay ,  12. In 2011, Rajasingh et al. determined the reliability measures in circulant network 13. 

2. Basic concepts 

In this section we give the basic definitions and preliminaries that are required for the study. 

Definition 2.1. 4 A container  between two distinct nodes  and  in a network  is a set of node-disjoint 
paths between  and . The number of paths in  is called the width of . A   container with 
width  is denoted by . The length of , written as , is the length of a longest path in 

.    

Definition 2.2. 9 For , the -wide distance from  to  in a network  is defined as    

 = min  is a container with width  between  and  

  The w -wide diameter of  is defined as  

     In other words, for , the -wide diameter  of a network  is the minimum  such that for any two 
distinct vertices  and  there exist  vertex-disjoint paths of length at most  from  to .  

     The notion of -wide diameter was introduced by Hsu 5 to unify the concepts of diameter and connectivity. It is 
desirable that an ideal interconnection network  should be one with con- nectivity   as large as possible and 
diameter  as small as possible. The wide-diameter  combines connectivity  and diameter , 
where  Hence  is a more suitable parameter than  to measure fault-tolerance and 
efficiency of parallel processing computer networks. Thus, determining the value of  is of significance for a 
given graph  and an integer . Hsu proved that this problem is NP-complete 5. 
 
Remark 2.3. If there exists a container such that each of the w paths in  is a shortest path 
between  and  in , then . 
 
Definition 2.4. 2 For , the -fault distance frtom  to  in a network  is  

 = max  with  and ,  are not in  
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where  denotes the shortest distance between  and  in  
 
The notion of  was defined by Hsu 5 and the special case in which   was studied by 
Krishnamoorthy et al. 6. 
 
Definition 2.5. 13 For , the -fault wide distance from  and  in a network  is  
 

 
 
The -fault wide diameter of  is  
 

 
 
Definition 2.6. 2 The -Rabin number  of a network  is the minimum  such that, for any  distinct 
vertices  there exists  vertex-disjoint paths of length at most  form  to  
 
This concept was first defined by Hsu [5]. It is clear that when  ,  
for any network  
The following are basic properties and relationships among  
 
Lemma 2.7. 2 The following statements hold for any network  of connectivity  

1.  
2.  
3.  
4. for  

 
Lemma 2.8. 13 The following statements hold for any network  of connectivity  

1.  
2.  for  

3. Main Results 

     A tree is a connected graph that contains no cycles. The most common type of tree is the binary tree. It is so 
named because each node can have at most two descendents. A binary tree is said to be a complete binary tree if 
each internal node has exactly two descendents. These descendents are described as left and right children of the 
parent node. Binary trees are widely used in data structures because they are easily stored, easily manipulated, and 
easily retrieved. Also, many operations such as searching and storing can be easily performed on tree data structures. 
Furthermore, binary trees appear in communication pattern of divided-and-conquer type algorithms, functional and 
logic programming, and graph algorithms 3. 
     For any non-negative integer , the complete binary tree of height , denoted by  , is the binary tree where 
each internal vertex has exactly two children and all the leaves are at the same level. Clearly, a complete binary tree 

 has  levels and level , , contains  vertices. Thus   has exactly   vertices. The rooted 
complete binary tree  is obtained from a complete binary tree   by attaching to its root a pendant edge. The 
new vertex is called the root of  and is considered to be at level 0  and level  in  becomes  in , 
where . See Figure 1. 
 
Definition 3.1. Let  be a complete binary tree, . A graph which is obtained from two copies of complete 
binary tree , say  by joining each vertex of  and the corresponding vertex of  by an edge is called a 
extended theta mesh and is denoted by . See Figure 2.  
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Figure  1: Complete binary tree 4T  and Rooted complete binary tree 5RT  

 
Remark 3.2.   has   vertices and  edges. The diameter  and it is 2-
connected planar biregular graph, where  

 
Definition 3.3. Let   be a rooted complete binary tree, . A graph which is obtained from two copies of 
rooted complete binary tree , say  by joining each vertex of   and the corresponding vertex of ,  
by an edge except level 0 is called an extended rooted theta mesh and is denoted by . See Figure 2.  

 
Remark 3.4.   has  vertices and   edges, where   

 
Definition 3.5. A graph which is obtained from  by identifying the pendant vertices is known as identified 
extended rooted theta mesh. For brevity, we call this graph as identified theta mesh and denote it by . 
The identified vertex is called the root of  .   
Remark 3.6.   has   vertices and  edges,  

 
Figure  2: Extended theta mesh (4)ETM  and extended rooted theta mesh (5)ERTM  

 
   

     A hypergraph is a generalization of a graph in which an edge can connect any number of vertices and are called 
hyperedges. Hypergraphs arise naturally in important practical problems, including circuit layout, boolean 
satisfiability and numerical linear algebra 14. Hypergraphs are also considered a useful tool for modeling system 
architectures and data structures and to represent a partition, covering and clustering in the area of circuit design 15.       
A transversal of a hypergraph  is a set of vertices that contains at least one vertex of each hyperedge 16. Computing 
the transversal hypergraph has applications in combinatorial optimization 17, in game theory, and in several fields of 
computer science such as machine learning 18, indexing of databases, the satisfiability problem, data mining 19, and 
computer program optimization 20. 
     A hypertree is a hypergraph  if there is a tree  such that the hyperedges of  induce subtrees in  21. In the 
literature, hypertree is also called a subtree hypergraph or arboreal hypergraph 16, 21. 

 



1100   R. Sundara Rajan et al.  /  Procedia Computer Science   57  ( 2015 )  1096 – 1103 

 

 
 

Figure  3: 2-wide diameter of (4)ETM  
   

     The basic skeleton of a hypertree is a complete binary tree . Here the nodes of the tree are numbered as 
follows: The root node has label 1. The root is said to be at level 1. Labels of left and right children are formed by 
appending a 0 and 1, respectively, to the label of the parent node. See Figure . The decimal labels of the 
hypertree in Figure  is depicted in Figure . Here the children of the node  are labeled as  and . 
Additional links in a hypertree are horizontal and two nodes are joined in the same level  of the tree if their label 
difference is . We denote an -dimensional(level) hypertree as . It has  vertices and  
edges 22. 
     A hypertree is an interconnection topology for incrementally expansible multicomputer systems, which combines 
the easy expansibility of tree structures with the compactness of the hypercube; that is, it combines the best features 
of the binary tree and the hypercube. These two properties make this topology particulary attractive for 
implementation of multiprocessor networks of the future, where a complete computer with a substantial amount of 
memory can fit on a single VLSI chip 22 .  
     The crossing number 3 of interconnection networks is an important property in VLSI Layout. The highlight of 
this paper is the fact that  is isomorphic to , thereby proving that  is planar. 
 
Isomorphic Algorithm  

 
Input : The r -dimensional identified theta mesh   and the -dimensional hypertree , . 
Algorithm : Removal of root vertex and the edges joining  and  of  leaves  and . Label the 
vertices of   from 0 to  and the vertices of  from  to  using inorder labeling 23 and the label 
the root vertex as . Removal the horizontal edges in hypertree   leaves a complete binary tree  and 
label the vertices of  using inorder labeling 23. See Figure 5.   
Output :  is isomorphic to , . See Figure 5. 
 
Theorem 3.7.  The identified theta mesh  is isomorphic to the hypertree  , where .  
Proof. Label the vertices of  and , using Isomorphic Algorithm. Let  be any vertex in  with 
label . We define a function  from  to  as follows: 
   
     The function  is obviously bijective. Let  and  be two distinct vertices in   with label  and  
respectively. It follows that  and  are the labels of two distinct vertices in  given as follows:  
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Figure  4: )(a  (4)HT  with binary labels   )(b  (4)HT  with decimal labels 

 

 
Figure  5: (5)ITM  is isomorphic to (5)HT  

 
Let the labels  and  be adjacent in  . Then, we have the following three cases. 
Case 1 (  
By definition of complete binary tree,  and  are adjacent in  
Case 2 (  
  [by inorder labeling of ] 
  [by inorder labeling of ] 
 are adjacent in  
  
Case 3 (  is the root and   
                              
      As in Case 2, )(xg  and )(yg  are adjacent in )(rHT . 
 Similarly, we prove the converse.    

 
Corollary 3.8. The network    is isomorphic to , where   and  are the root vertices of    
and H  respectively. We call the graph H   as the root-fault hypertree and denote it by ,   

 
     Now we discuss certain combinatorial parameters of the r -dimensional root-fault hypertree  . 

 
Theorem 3.9.  Let  be the -dimensional root-fault hypertree  . Then  
Proof.  Let  be the left most and right most vertices of degree 2 in the same level of  Then length of  is       

 and length of  is  or vice-versa, where  
and   are the vertices adjacent to  and  respectively. See Figure 3. 
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For any other pair of vertices  Hence               
 
 

 
Figure  6: (4)ETM  with identifying vertices 

 
Theorem 3.10. Let  be the -dimensional root-fault hypertree  Then   
Proof.  is isomorphic to . Let ,  be the left most and right most vertices of degree 2 in the 
 level of  in . Then    

Let , where  is the faulty vertex in the  level of   in , which is adjacent 
to  Then  

                   
                   

Where  is a vertex in the  level of  and adjacent to  Also, by Theorem 3.9, , where 
 See Figure 6. 

For any other faulty vertex in , , where ,  in . Hence  
Proceeding in the same way, we prove    

 
Theorem 3.11. Let  be the -dimensional root-fault hypertree  Then .  
Proof.  is isomorphic to  Let , ,  be the three vertices in  as shown in the Figure 6. Then by 
Theorem 3.9,  Again by Remark 3.2,  For any other vertices , ,  , 

 and  Hence the proof.    

4. Concluding Remark  

In this paper, we prove that , , when  is a root-fault hypertree. It is 
very interesting to note that this is one of the important networks since various diameters discussed in this paper are 
equal. 
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