PAPER • OPEN ACCESS

Commutativity of nonassociative rings with identities in the center

To cite this article: K Madhusudhan Reddy 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042109

Related content

The missing link: operators for labelling multiplicity in the Clebsch-Gordan series G H Gadiyar and H S Sharatchandra
On some integral identities S A Zlobin
- MULTIOPERATOR RINGS AND ALGEBRAS A G Kurosh

View the article online for updates and enhancements.

Commutativity of nonassociative rings with identities in the center

K Madhusudhan Reddy
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, Tamil Nadu, India
E-mail: drkmsreddy@yahoo.in

Abstract

Let R be a nonassociative ring with center U. In this paper, it is shown that nonassociative ring R of char. $\neq 2$ with unity is commutative if it satisfies any one of the following identities: (i) $(x y) x+x(x y)+y \in U$, (ii) $(x y)^{2}-x^{2} y-x y^{2}-x y \in U$, (iii) $(x y)^{2}-x^{2} y-x y^{2}-y x \in U$ (iv) (xy) $)^{2}-x y^{2} \in U$, (v) (xy) $)^{2}-y^{2} x \in U$, (vi) ($\left.x^{2} y^{2}\right) z^{2}-(x y) z \in U$, (vii) $\left(x^{2} y^{2}\right) z^{2}-(x y) z \in U$ for all x, y, and for fixed z in R.

1. Introduction

Giriet.al. [2], have proved if R is a nonassociative ring with char. $\neq 2$. with unity satisfying the condition $(x y)^{2}-x y \in U$ for all x, y in R. This paper contains the generalization of nonassociative ring R with char. $\neq 2$ with unity satisfying $(x y) x+x(x y)+y \in U,(x y)^{2}-y^{2} x \in U$ and $(x y)^{2}-x y^{2} \in U$ then R is commutative and also, we also proved the commutativity of nonassociative ring R with char. $\neq 2$ with unity satisfying $\left(x^{2} y^{2}\right) z^{2}-(x y) z \in U,\left(x^{2} y^{2}\right) z^{2}-(x y) z \in U$ for all x, y, and for fixed z in R. Giri [3 and 4] proved if R is a 2 -torsion free nonassociative semi-simple ring with unity satisfying $(x y)^{2}-x^{2} y-x y^{2}-$ xy in center for all x, y in R, then R is commutative. Suvarna [7] also proved the commutativity of nonassociative ring R with char. $\neq 2$ with unity satisfying $(x y)^{2}-x^{2} y-x y^{2}-y^{2} x^{2}$ for all x, y in R. This paper includes the commutative of nonassociative ring R with char. $\neq 2$ with unity satisfying $(x y)^{2}-x^{2}$ $y-x y^{2}-x y \in U$ and $(x y)^{2}-x^{2} y-x y^{2}-y x \in U$.

Throughout this paper, R represents nonassociative ring with char. $\neq 2$. The center of R is defined as U $=\{u \in R /[u, R]=0\}$. It is also called as a commutative center. A ring R is of characteristic $\neq n$ if $n x=$ 0 implies $x=0$ for all x in R and n a natural number.

2. Main results

2.1 Theorem1:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y) x+x(x y)+y \in U$ for all x, y in R. Then R is commutative.
Proof:
By hypothesis $(x y) x+x(x y)+y \in U$
Now by replacing $y=y+\operatorname{lin}(1)$, we get $2 x^{2}+1 \in U$

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042109 doi:10.1088/1757-899X/263/4/042109

Since R is of char. $\neq 2$, we have $x^{2} \in U$
By taking $x=x+1$ in (2) and using (2), we have $2 x \in U$
Since R is of char. $\neq 2$, we have $x \in U$
Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.2 Theorem 2:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y)^{2}-x^{2} y-x y^{2}-x y \in U$ for all x, y in R. Then R is commutative.
Proof:
By hypothesis $(x y)^{2}-x^{2} y-x y^{2}-x y \in U$
Now by replacing $x=x+1$ in (3) and using (3), we get
(xy) $y+y(x y)-2 x y-2 y \in U$
Put $x=x+1$ in (4) and using (4), we get
$2 y^{2}-2 y \in U$
Since R is of char. $\neq 2,2 y^{2}-2 y \in U$
Now by replacing $y=y+1$ in (5) and using R is of char. $\neq 2$, we get
$y \in U$
Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.3 Theorem3:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y)^{2}-x^{2} y-x y^{2}-y x \in U$ for all x, y in R. Then R is commutative.
Proof:
By hypothesis $(x y)^{2}-x^{2} y-x y^{2}-y x \in U$
Now by replacing $x=x+1$ in (6) and using (6), we get
$(x y) y+y(x y)-2 x y-2 y \in U$
Put $x=x+1$ in (7) and using (7), we get
$2 y^{2}-2 y \in U$
Since R is of char. $\neq 2,2 y^{2}-2 y \in U$
Now by replacing $y=y+1$ in (5) and using R is of char. $\neq 2$, we get
$y \in U$
Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.4 Theorem4:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y)^{2}-x y^{2} \in U$ for all x, y in R. Then R is commutative.

Proof:

By hypothesis $(x y)^{2}-x y^{2} \in U$
Now by replacing $x=x+1$ in (9) and using (9), we get
$(x y) y+y(x y) \in U$
Put $x=x+1$ in (10) and using (10), we get
$2 y^{2} \in U$
Since R is of char. $\neq 2$, we get $y^{2} \in U$
$y=y+l$ in (11) and using R is of char. $\neq 2$, we get
Now by replacing $y=y+l$ in (11) and using R is of char. $\neq 2$, we get
$y \in U$

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042109 doi:10.1088/1757-899X/263/4/042109

Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.5 Theorem5:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y)^{2}-y^{2} x \in U$ for all x, y in R. Then R is commutative.
Proof:
By hypothesis $(x y)^{2}-y^{2} x \in U$
Now by replacing $x=x+1$ in (12) and using the Theorem (4)
Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.6 Theorem 6:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $(x y)^{2} z^{2}-(x y) z \in U$ for all x, y, z in R. Then R is commutative.

Proof:

By hypothesis $(x y)^{2} z^{2}-(x y) z \in U$
Now by replacing $z=z+1$ in (13), we get
$(x y)^{2} z^{2}+2(x y)^{2} z+(x y)^{2}-(x y) z-x y \in U$.
Using (13) in (14), we have
$2(x y)^{2} z+(x y)^{2}-x y \in U$.
Again, by replacing $z=z+1$ in (15) and using (15), we obtain
$2(x y)^{2} \in U$.
Since R is of char. $\neq 2$, we have
$(x y)^{2} \in U$.
Now by replacing $x=x+1$ in (17), we have
$(x y+y)^{2} \in U$
or $(x y)^{2}+(x y) y+y(x y)+y^{2} \in U$.
Using (17) in (18), we obtain
(xy) $y+y(x y)+y^{2} \in U$.
Again, by replacing $x=x+1$ in (19) and using (19), we get $2 y^{2} \in U$.
Since R is of char. $\neq 2$, we get $y^{2} \in U$
Now by taking $y=y+1$ in (20) and using (20), we get $2 y \in U$.
Since R is of char. $\neq 2$, we have, $y \in U$.
Therefore $x y=y x$ for all x in R.
Hence R is commutative.

2.7 Theorem 7:

Let R be a nonassociative ring of char. $\neq 2$ with unity satisfying $\left(x^{2} y^{2}\right) z^{2}-(x y) z \in U$ for all x, y, z in R. Then R is commutative.
Proof:
By hypothesis $\left(x^{2} y^{2}\right) z^{2}-(x y) z \in U$.
Now by replacing z with $z+1$ in (21) and using (21), we obtain
$2\left(x^{2} y^{2}\right) z+x^{2} y^{2}-x y \in U$.
Again, replacing $z=z+1$ in (22) and using (22), we get $2\left(x^{2} y^{2}\right) \in U$.
Since R is of char. $\neq 2$, we obtain
$x^{2} y^{2} \in U$.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042109 doi:10.1088/1757-899X/263/4/042109

By taking $x=x+1$ in (23) and using (23), we have
$2 x y^{2}+y^{2} \in U$.
Now again by replacing x with $x+1$ in (24) and using (24), we get
$2 y^{2} \in U$. Since R is of char. $\neq 2$, we obtain $y^{2} \in U$.
By replacing $y=y+1$ in (46) and using (46), we get $2 y \in U$.
Since R is of char. $\neq 2$, we have $y \in U$ or $x y=y x$ for all x in R.
Hence R is commutative.

References

[1] Abu-Khuzam H 1992 ActaMathematica Hungarica 58 (3-4) 273-277
[2] Giri R D Modi A K volume 14, 1992-1993.
[3] Giri R D Rakhunde R R Kyungpook 1992 Mathematical J. 32(1)
[4] Giri RD and Rakhunde R R Bull Cal 1992 Math. Soc. 84 81-84.
[5] Gupta V 1979ActaMathematicaAcdemiaeScientianumHungaricaeTomus 29 (1-2) 23-29
[6] Harmanci A 1980 ActaMathematicaAcdemiaeScientianumHungaricaeTomus 36(3-4) 233-236
[7] Suvarna K 2012 Int. J. Mathematical Archive 3(10) 3745-3750
[8] ijmsa.yolasite.com

