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Abstract. Let R be a nonassociative ring with center U. In this paper, it is shown that 

nonassociative ring R of char.  2 with unity is commutative if it satisfies any one of the 

following identities: 

      (i) (xy)x + x(xy) + y U, (ii) (xy)
2
 -  x

2
 y – xy

2
 - xy U, (iii) (xy)

2
 -  x

2
 y – xy

2
 - yx U 

                          (iv) (xy)
2
– xy

2
 U, (v) (xy)

2
– y

2
 x   U, (vi) (x

2
y

2
)z

2
 – (xy)z  U,  

                          (vii) (x
2
y

2
)z

2
–(xy)z  U for all x, y, and for fixed z in R. 

  

1.  Introduction 

Giriet.al. [2], have proved if R is a nonassociative ring with char.  2. with unity satisfying the 

condition (xy)
2
 – xyU for all x, y in R. This paper contains the generalization of nonassociative ring R 

with char.  2 with unity satisfying (xy)x + x(xy) + yU, (xy)
2
– y

2
 xU and (xy)

2
– xy

2
U then R is 

commutative and also, we also proved the commutativity of nonassociative ring R with char.  2 with 

unity satisfying (x
2
y

2
)z

2
 – (xy)zU, (x

2
y

2
) z

2
 – (xy)zU for all x, y, and for fixed z in R.  Giri [3 and 4]   

proved if R is a 2-torsion free nonassociative semi-simple ring with unity satisfying (xy)
2
 – x

2
y – xy

2
 – 

xy in center for all x, y in R, then R is commutative. Suvarna [7] also proved the commutativity of 

nonassociative ring R with char.  2 with unity satisfying (xy)
2
-  x

2
 y – xy

2
 – y

2
 x

2
 for all x, y in R. This 

paper includes the commutative of nonassociative ring R with char.  2 with unity satisfying (xy)
2
-  x

2
 

y – xy
2
 - xyU and (xy)

2
-  x

2
 y – xy

2
 - yxU. 

 

Throughout this paper, R represents nonassociative ring with char.  2. The center of R is defined as U 

= {uR / [u, R] = 0}. It is also called as a commutative center. A ring R is of characteristic ≠ n if nx = 

0 implies x = 0 for all x in R and n a natural number. 

2.  Main results 

2.1 Theorem1: 

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)x+ x(xy) + yU for all x, y in R. 

Then R is commutative. 

Proof: 

By hypothesis (xy)x+ x(xy) + yU                                                                                                 (1) 

Now by replacing y = y + 1in (1), we get   2x2
 + 1 U 

http://creativecommons.org/licenses/by/3.0
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Since R is of char.  2, we havex
2
U                                                                                            (2) 

By taking x = x + 1 in (2) and using (2), we have   2xU 

Since R is of char.  2, we havexU 

Therefore xy = yx for all x in R. 

Hence R is commutative. 

2.2 Theorem 2:  

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)
2
-  x

2
 y – xy

2
 - xyU for all x, y in 

R. Then R is commutative. 

Proof: 

By hypothesis (xy)
2
-  x

2
 y – xy

2
 - xyU                                                                                          (3) 

Now by replacing x = x + 1 in (3) and using (3), we get   

(xy)y + y(xy) - 2xy - 2y U                                                                                                           (4) 

Put x = x + 1 in (4) and using (4), we get  

2y
2
 – 2yU 

Since R is of char.  2, 2y
2
 – 2yU                                                                                                (5) 

Now by replacing y = y + 1 in (5) and using R is of char.  2, we get 

yU 

Therefore xy = yx for all x in R. 

Hence R is commutative. 

 

2.3 Theorem3:  

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)
2
-  x

2
 y – xy

2
 - yxU for all x, y in 

R. Then R is commutative. 

Proof: 

By hypothesis (xy)
2
-  x

2
 y – xy

2
 - yxU                                                                                           (6) 

Now by replacing x = x + 1 in (6) and using (6), we get   

(xy)y + y(xy) - 2xy - 2y U                                                                                                            (7) 

Put x = x + 1 in (7) and using (7), we get  

2y
2
 – 2yU 

Since R is of char.  2, 2y
2
 – 2yU                                                                                                 (8) 

Now by replacing y = y + 1 in (5) and using R is of char.  2, we get 

yU 

Therefore xy = yx for all x in R. 

Hence R is commutative. 

 

2.4 Theorem4:  

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)
2
– xy

2
U for all x, y in R. Then R 

is commutative. 

Proof: 

By hypothesis (xy)
2
– xy

2
U                                                                                                          (9) 

Now by replacing x = x + 1 in (9) and using (9), we get   

(xy)y + y(xy)U                                                                                                                          (10) 

Put x = x + 1 in (10) and using (10), we get  

2y
2
U 

Since R is of char.  2, we get y
2
U                                                                                             (11) 

y = y + 1in (11) and using R is of char.  2, we get 

Now by replacing y = y + 1 in (11) and using R is of char.  2, we get 

yU 
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Therefore xy = yx for all x in R. 

Hence R is commutative. 

 

2.5 Theorem5: 

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)
2
– y

2
 xU for all x, y in R. Then R 

is commutative. 

Proof: 

By hypothesis (xy)
2
– y

2
 xU                                                                                                        (12) 

Now by replacing x = x + 1 in (12) and using the Theorem (4)  

Therefore xy = yx for all x in R. 

Hence R is commutative. 

 

2.6 Theorem 6:   

Let R be a nonassociative ring of char.  2 with unity satisfying (xy)
2
z

2
 – (xy)zU for all x, y, z in R. 

Then R is commutative. 

Proof: 

By hypothesis (xy)
2
z

2
 – (xy)zU                                                     (13) 

Now by replacing z = z + 1 in (13), we get    

(xy)
2
z

2
 + 2(xy)

2
z + (xy)

2
 – (xy)z – xyU.                                                  (14) 

Using (13) in (14), we have 

2(xy)
2
z + (xy)

2
 – xy U.                                                    (15) 

Again, by replacing z = z + 1 in (15) and using (15), we obtain 

2(xy)
2
 U.                                                                  (16) 

Since R is of char.  2, we have 

(xy)
2
 U.                                                       (17) 

Now by replacing x = x + 1 in (17), we have 

(xy+y)
2
 U         

or (xy)
2
 + (xy)y + y(xy) + y

2
 U.                                       (18) 

Using (17) in (18), we obtain 

(xy)y + y(xy) + y
2
 U.                                       (19)       

Again, by replacing x = x + 1in (19) and using (19), we get 2y
2
U.  

Since R is of char.  2, we get  

y
2
U                                          (20) 

Now by taking y = y + 1 in (20) and using (20), we get 2y  U. 

Since R is of char.  2, we have,y U. 

Therefore xy = yx for all x in R. 

Hence R is commutative.  

                                                                              

2.7 Theorem 7:   

Let R be a nonassociative ring of char.  2 with unity satisfying (x
2
y

2
) z

2
 – (xy)zU for all x, y, z in R. 

Then R is commutative. 

Proof: 

By hypothesis (x
2
y

2
) z

2
 – (xy)zU.                                                                  (21) 

Now by replacing z with z + 1 in (21) and using (21), we obtain  

2(x
2
y

2
)z + x

2
y

2
 – xyU.                                        (22) 

Again, replacing z = z + 1 in (22) and using (22), we get 2(x
2
y

2
) U.  

Since R is of char.  2, we obtain 

x
2
y

2
U.                                                      (23) 
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By taking x = x + 1 in (23) and using (23), we have 

2xy
2
 + y

2
U.                                         (24) 

Now again by replacing x with x + 1 in (24) and using (24), we get 

2y
2
U. Since R is of char.  2, we obtain 

y
2
U.                                          (25) 

By replacing y = y + 1 in (46) and using (46), we get 2yU.  

Since R is of char.  2, we have y U or xy = yx for all x in R. 

Hence R is commutative.                  
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