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a b s t r a c t

Bearing fault, Impeller fault, seal fault and cavitation are the main causes of breakdown in a mono block
centrifugal pump and hence, the detection and diagnosis of these mechanical faults in a mono block
centrifugal pump is very crucial for its reliable operation. Based on a continuous acquisition of signals
with a data acquisition system, it is possible to classify the faults. This is achieved by the extraction of
features from the measured data and employing data mining approaches to explore the structural
information hidden in the signals acquired. In the present study, statistical features derived from the
vibration data are used as the features. In order to increase the robustness of the classifier and to reduce
the data processing load, dimensionality reduction is necessary. In this paper dimensionality reduction is
performed using traditional dimensionality reduction techniques and nonlinear dimensionality reduc-
tion techniques. The effectiveness of each dimensionality reduction technique is also verified using visual
analysis. The reduced feature set is then classified using a decision tree. The results obtained are
compared with those generated by classifiers such as Naïve Bayes, Bayes Net and kNN. The effort is to
bring out the better dimensionality reduction techniqueeclassifier combination.

Copyright � 2014, Karabuk University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Condition monitoring is used to find faults at an early stage [10]
so that diagnosis and correction of those faults can be initiated
before they become more prominent and lead to loss in produc-
tivity. Unexpected breakdown of mono block centrifugal pump
parts increases the down time and maintenance costs. This has
motivated academic researchers and industrial experts to focus
their attention on such studies using the contemporary techniques
and algorithms available in this field.

Bearings fault, impeller fault, seal fault and cavitation [13] can
cause serious problems such as noise, high vibration, leakage etc.
and degrade the performance of the mono block centrifugal pump
[12]. In order to keep the pump performing [35] at its best, different
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methods of fault diagnosis have been developed and used effec-
tively to detect the machine faults at an early stage. Vibration
analysis is the one of the prime tools to detect and diagnose mono
block centrifugal pump faults [11]. Vibration based pump condition
monitoring and diagnosis involves data acquisition from the mono
block centrifugal pump, feature extraction from the acquired data,
feature selection, and interpreting the results.

Different methods and approaches are used for fault diagnosis.
Rajakarunakaran et al. [21] proposed amodel for the fault detection
of centrifugal pumping system using feed forward network with
back propagation algorithm and binary adaptive resonance
network (ART1) for classification of seven categories of faults in the
centrifugal pumping system. In the work reported by Sakthivel
et al. [23]; the use of Support Vector Machines (SVMs) and Proximal
Support Vector Machines (PSVMs) as a tool for accurately identi-
fying and classifying pump faults was presented. SVMwas found to
have a slightly better classification capability than PSVM. Sakthivel
et al. [24] presented the use of decision tree and rough sets to
generate rules from statistical features extracted from vibration
signals under good and faulty conditions of a mono block centrif-
ugal pump. A fuzzy classifier is built using decision tree and rough
.V. All rights reserved.
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set rules, tested and the results are compared with those generated
by a PCA based decision tree-fuzzy classifier. Sakthivel et al. [25]
reported the use of statistical features extracted from time
domain signals for classification of faults in centrifugal pumps us-
ing decision tree. For the fault classification of mono block cen-
trifugal pump, Sakthivel et al. [26] have used artificial immune
recognition system (AIRS). The fault classification efficiency of AIRS
is compared with hybrid systems such as PCA-Naïve Bayes and
PCA-Bayes Net. AIRS was found to outperform other hybrid sys-
tems. Wang and Chen [31] introduced a fault diagnosis method for
a centrifugal pump with frequency domain symptom parameter
using wavelet transforms for feature extraction, rough sets for rule
generation and fuzzy neural network for classification to detect
faults and distinguish fault types at early stages. Rafiee et al. [20]
illustrated an artificial neural network (ANN)-based procedure for
fault detection and identification in gearboxes using a new feature
vector extracted from standard deviation of wavelet packet co-
efficients of vibration signals. The use of vibration signals requires
minimum instrumentation but the use of wavelet transforms in-
creases the computational requirements. M. Zhao et al. [42]
employed TR-LDA based dimensionality reduction technique for
fault diagnosis of rolling element bearings. Y. Zhang et al. [37]
proposed an improved manifold learning algorithm by combining
adaptive local linear embedding and recursively applying normal-
ised cut algorithm for nonlinear dimensionality reduction, which
was then proven to be effective in dealing with standard test data
sets as well as on the TennesseeeEastman process. D.Q. Zhang et al.
[36] proposed an efficient dimensionality reduction algorithm
called semi supervised dimensionality reduction. Zhang et al. [38e
40] presented a novel feature extraction technique called group
sparse canonical correlation analysis (GSCCA). M.S. Baghshah et al.
[2] proposed a kernel based metric learning technique that can
produce nonlinear transformation of the input features resulting in
better learning performance. Zhang et al. [38e40] proposed an
improvement over the Isomap dimensionality reduction technique
called the Marginal Isomap (M-Isomap) which was able to provide
better separation of data clusters. F.P. Nie et al. [17] developed an
algorithm to find the global optimum for the orthogonal con-
strained trace ratio problem. Yaguo Lei et al. [33] proposed a system
for fault diagnosis of rolling element bearings based on empirical
mode decomposition (EMD), an improved distance evaluation
technique and the combination of multiple adaptive neuro-fuzzy
inference systems (ANFISs). Van Tung Tran et al. [30] discussed a
combined fault diagnosis system for induction motor based on
classification and regression tree (CART) algorithm and ANFIS.
Yaguo Lei [34] proposed fault diagnosis of rotating machinery
based on statistic analysis and ANFIS. Necla Togun and Sedat Baysec
[16] presented the application of genetic programming (GP) to
predict the torque and brake specific fuel consumption of a gasoline
engine. In the work reported by Demetgul [5] fault diagnosis of
pneumatic systems using ANN was presented.

However, to the best of our knowledge, the comparison of
traditional dimensionality reduction techniques with nonlinear
dimensionality reduction techniques for fault classification of a
mono block centrifugal pump has not been reported so far. This
paper investigates traditional dimensionality reduction technique
PCA and the following nine nonlinear dimensionality reduction
techniques: (1) Kernel PCA, (2) Isomap, (3) Maximum Variance
Unfolding, (4) diffusion maps, (5) Locally Linear Embedding, (6)
Laplacian Eigenmaps, (7) Hessian LLE, (8) Local Tangent Space
Analysis, and (9) manifold charting. These dimensionality reduc-
tion techniques are used to transform statistical features extracted
from the pump vibration signals. Decision tree, naïve Bayes Bayes
Net and kNN classifiers are then used to classify the faults. Themain
objectives of the work are:
Please cite this article in press as: N.R. Sakthivel, et al., Comparison of dime
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(i) To investigate to what extent the nonlinear dimensionality
reduction techniques outperform the traditional PCA on
centrifugal pump data sets

(ii) To find out the best dimensionality reduction techniquee
classifier combination.
2. Experimental studies

2.1. Experimental setup

Fig. 1 shows the schematic diagram of the experimental test rig.
The motor (2HP) drives the pump. The control valve is used to
adjust the flow at the inlet and the outlet of the pump. The inlet
valve is used to create pressure drop between the suction and at
the eye of the impeller to simulate cavitation. An accelerometer
mounted at the eye of the impeller (location shown in Fig. 1), is
used to measure the vibration signals. This is due to the fact that
the mechanical components under consideration in the present
study (seal, impeller, bearing), are located close to the eye of the
impeller.

2.2. Experimental procedure

The vibration signals are acquired from the centrifugal pump
working under normal condition at a rated speed of 2880 rpm.
Centrifugal pump specification is shown in Table 1. Vibration sig-
nals from the accelerometer are measured. The sampling frequency
is 24 kHz. 250 sets of readings are taken for each centrifugal pump
condition.

In the present study, the following faults are simulated

Bearing fault e Inner and Outer race fault
Seal fault e Broken seal
Impeller fault e Damaged impeller
Bearing and Impeller fault together
Cavitation e at the eye of the impeller

The faults are introduced one at a time and the pump perfor-
mance characteristic and vibration signals are taken.

3. Feature extraction

Statistical analysis of vibration signals yields different descrip-
tive statistical parameters. The statistical parameters taken for this
study are mean, standard error, median, standard deviation, sample
variance, kurtosis, skewness, range, minimum,maximum, and sum.
These eleven features are extracted from vibration signals.

4. Dimensionality reduction techniques [14]

4.1. Linear dimensionality reduction techniques

4.1.1. Principle component analysis (PCA)
PCA is a linear technique for dimensionality reduction. It per-

forms dimensionality reduction by embedding the data into a linear
subspace of lower dimensionality. PCA is one of the most popular
(unsupervised) techniques. Therefore, PCA is included in this
comparative study.

PCA constructs a low-dimensional representation of the data
that describes asmuch of the variance in the data as possible. This is
done by finding a linear basis of reduced dimensionality for the
data, in which the amount of variance in the data is maximal. The
basic working of a PCA is presented below.

Let x1, x2,., xn be N � 1 vectors
nsionality reduction techniques for the fault diagnosis of mono block
hnology, an International Journal (2014), http://dx.doi.org/10.1016/



Fig. 1. Experimental test rig.
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Step 1 Mean value xis calculated using the equation:

x ¼ 1
N

XN
xi (1)
i¼1

Step 2 The mean value is subtracted from each feature:

Fi ¼ xi � x (2)
Step 3 Matrix A¼ [F1, F2,.., FN] is generated with and covariance
matrix C is computed as follows:

C ¼ 1
M

XN
FiF

T
i ¼ AAT (3)
i¼1

The covariance matrix characterizes the distribution of the data.

Step 4 Eigenvalues are computed as:

C ¼ l1 > l2 > .lN (4)
Step 5 Eigenvectors are computed as:

C ¼ u1;u2;.uN (5)
Since C is symmetric, u1, u2,.,uN form a basis, ðxi � xÞ, can be
written as a linear combination of the eigenvectors:

xi � x ¼ b1u1 þ b2u2 þ.þ bNuN ¼
XN
i¼1

l (6)

where b1, b2,., bN are scalars.
Table 1
Centrifugal pump specification.

Speed: 2880 rpm Pump size: 50 � 50 mm
Current: 11.5 A Discharge: 392 L per second
Head: 20 m Power: 2 HP
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Step 6 For dimensionality reduction, it keeps only the terms cor-
responding to the K largest eigenvalues:

xi � x ¼
XN

biui where K � N (7)

i¼1

The representation of x$x into the basis u1, u2,., uK is thus

b1
b2
/
bK

(8)

4.2. Nonlinear dimensionality reduction techniques

4.2.1. Diffusion maps
Diffusion maps are based on defining a Markov randomwalk on

the graph of the data. By performing the randomwalk for a number
of time steps, a measure for the proximity of the data points is
obtained. Using this measure, the diffusion distance is defined. The
basic working of diffusion map is presented below :

Step 1 A graph of the data is constructed first in the diffusion maps
frame work. Using the Gaussian Kernel function, the
weights of the edges in the graph are computed, leading to a
matrix W with entries

Wij ¼ e�
xi�x2

j
2s2 (9)
where s indicates the variance of the Gaussian.

Step2 normalization of the matrix W is performed in such a way
that its rows add up to 1. In this way, a matrix P(1) is formed
with entries

pð1Þij ¼ wijP
kwik

(10)
Since diffusion maps originate from dynamical systems theory,
the resulting matrix P(1) is considered a Markov matrix that defines
nsionality reduction techniques for the fault diagnosis of mono block
hnology, an International Journal (2014), http://dx.doi.org/10.1016/
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the forward transition probability matrix of a dynamical process.
Hence, thematrix P(1) represents the probability of a transition from
one data point to another data point in a single time step. The for-
ward probability matrix for t time steps P(t) is thus given by (P(1))t.

Step3Diffusion distance is defined using random walk forward
probabilities ptij

DðtÞ�x ; x
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�

pðtÞik � ptjk

�vuuut (11)
i j
k JðxkÞð0Þ

In the above equation, JðxkÞð0Þ is a term that attributes more
weight to parts of the graph with high density. It is defined by
JðxkÞð0Þ ¼ mi=

P
jmj, where mi is the degree of node xi defined by

mi ¼
P

jpij

Step 4 In the low-dimensional representation of the data Y, diffu-
sion maps attempt to retain the diffusion distances. Using
spectral theory on the random walk, the low-dimensional
representation Y that retains the diffusion distances
DðtÞðxi; xjÞ is formed by the d nontrivial principal eigenvec-
tors of the eigenproblem

PðtÞv ¼ lv (12)
Because the graph is fully connected, the largest eigenvalue is
trivial (viz. l1 ¼ 1), and its eigenvector v1 is thus discarded. The
low-dimensional representation Y is given by the next d principal
eigenvectors. In the low-dimensional representation, the eigen-
vectors are normalized by their corresponding eigenvalues. Hence,
the low-dimensional data representation is given by

Y ¼ fl2v2; l3v3;.; ldþ1vdþ1g (13)
4.2.2. Hessian LLE
Hessian LLE (HLLE) [7] is a variant of LLE that minimizes the

‘curviness’ of the high-dimensional manifold when embedding it into
a low-dimensional space, under the constraint that the low-
dimensional data representation is locally isometric. This is done by
an eigenanalysis of a matrix H that describes the curviness of the
manifold around the data points. The curviness of the manifold is
measured by means of the local Hessian at every data point. The local
Hessian is represented in the local tangent space at the data point, in
order to obtain a representation of the local Hessian that is invariant to
differences in the positions of the data points. It can be shown that the
coordinates of the low-dimensional representation can be found by
performinganeigenanalysis of anestimatorHof themanifoldHessian.

Step 1 Identifying the k nearest neighbours for each data point xi
using Euclidean distance. Assume local linearity of the
manifold in the neighbourhood.

Step 2 Applying PCA on its k nearest neighbours, the local tangent
space at point xi can be found.

Step 3 An estimator for the Hessian of the manifold at point xi in
local tangent space coordinates is computed. In order to do
this, a matrix Zi is formed that contains (in the columns) all
cross products of M up to the dth order.

Step 4 Thematrix Zi is orthonormalized by applying Gram-Schmidt
ortho-normalization [1].

The estimation of the tangent Hessian Hi is now given by the
transpose of the last d(d þ 1)/2 columns of the matrix Zi. Using the
Please cite this article in press as: N.R. Sakthivel, et al., Comparison of dime
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Hessian estimators in local tangent coordinates, a matrix H is
constructed

Hlm ¼
X
i

X
j

�
ðHiÞjlXðHiÞjm

�
(14)

The matrix H represents information on the curviness of the
high-dimensional data manifold. An eigenanalysis of H is per-
formed in order to find the low-dimensional data representation
that minimizes the curviness of the manifold. The eigenvectors
corresponding to the d smallest nonzero eigenvalues of H are
selected and form the matrix Y, which contains the low-
dimensional representation of the data.

4.2.3. Isomap
Isomap [28] is a technique that attempts to preserve pairwise

geodesic (or curvilinear) distances between data points. Geodesic
distance is the distance between two points measured over the
manifold.

Step 1 In Isomap, the geodesic distances between the data points xi
(i ¼ 1, 2,., n) are computed by constructing a neighbour-
hood graph G, inwhich every data point xi is connected with
its k nearest neighbours xij (j ¼ 1, 2,., k) in the data set X.

Step 2 The shortest path between two points in the graph forms an
estimate of the geodesic distance between these two points,
and can easily be computed using Dijkstra’s or Floyd’s
shortest-path algorithm [6,8].

Step 3 The geodesic distances between all data points in X are
computed, thereby forming a pairwise geodesic distance
matrix. The geodesic distances between all data points in X
are computed, thereby forming a pairwise geodesic distance
matrix.

Step 4 The low-dimensional representations yi of the data points xi
in the low-dimensional space Y are computed by applying
classical scaling.

4.2.4. Kernel PCA
Kernel PCA (KPCA) is the reformulation of traditional linear PCA

in a high-dimensional space that is constructed using a kernel
function [27]. Kernel PCA computes the principal eigenvectors of
the kernel matrix, rather than those of the covariance matrix. The
reformulation of PCA in kernel space is straightforward, since a
kernel matrix is similar to the inner product of the data points in
the high-dimensional space that is constructed using the kernel
function. The application of PCA in the kernel space provides Kernel
PCA the property of constructing nonlinear mappings.

4.2.5. Laplacian Eigenmaps
In Laplacian Eigenmaps, the local properties are based on the

pairwise distances between near neighbours. Laplacian Eigenmaps
compute a low-dimensional representation of the data inwhich the
distances between a data point and its k-nearest neighbours are
minimized. This is done in a weighted manner, i.e., the distance in
the low-dimensional data representation between a data point and
its first nearest neighbour contributes more to the cost function
than the distance between the data point and its second nearest
neighbour. Using spectral graph theory, the minimization of the
cost function is defined as an eigenproblem.

4.2.6. Local linear embedding (LLE)
LLE [22] is a technique similar to Isomap (and MVU) in that it

constructs a graph representation of the data points. In contrast to
Isomap, it attempts to preserve solely local properties of the data.
As a result, LLE is less sensitive to short-circuiting than Isomap,
nsionality reduction techniques for the fault diagnosis of mono block
hnology, an International Journal (2014), http://dx.doi.org/10.1016/



N.R. Sakthivel et al. / Engineering Science and Technology, an International Journal xxx (2014) 1e9 5
because only a small number of local properties are affected if
short-circuiting occurs. Furthermore, the preservation of local
properties allows for successful embedding of non-convex mani-
folds. In LLE, the local properties of the data manifold are con-
structed by writing the high-dimensional data points as a linear
combination of their nearest neighbours. In the low-dimensional
representation of the data, LLE attempts to retain the reconstruc-
tion weights in the linear combinations as good as possible.
4.2.7. Local tangent space analysis (LTSA)
LTSA describes local properties of the high-dimensional data

using the local tangent space of each data point [41]. It is based on
the observation that, if local linearity of the manifold is assumed,
there exists a linear mapping from a high-dimensional data point to
its local tangent space, and that there exists a linear mapping from
the corresponding low-dimensional data point to the same local
tangent space. LTSA attempts to align these linear mappings in such
a way, that they construct the local tangent space of the manifold
from the low-dimensional representation.
4.2.8. Manifold charting
Manifold charting constructs a low-dimensional data repre-

sentation by aligning a MoFA or a MoPPCA model [4]. Manifold
charting minimizes a convex cost function that measures the
amount of disagreement between the linear models on the global
Fig. 2. Three dimensional representation of centrifugal pump fault data set for Hessian LL

Please cite this article in press as: N.R. Sakthivel, et al., Comparison of dime
centrifugal pump using vibration signals, Engineering Science and Tec
j.jestch.2014.02.005
coordinates of the data points. The minimization of this cost
function can be performed by solving a generalized eigenproblem.

4.2.9. Maximum variance unfolding (MVU)
MVU is a technique that attempts to resolve this problem by

learning the kernel matrix. MVU learns the kernel matrix by
defining a neighbourhood graph on the data (as in Isomap) and
retaining pairwise distances in the resulting graph [32]. MVU is
different from Isomap in that it explicitly attempts to ‘unfold’ the
data manifold. It is done by maximizing the Euclidean distances
between the data points, under the constraint that the distances in
the neighbourhood graph are left unchanged (i.e., under the
constraint that the local geometry of the data manifold is not dis-
torted). The resulting optimization problem can be solved using
semi definite programming.

5. Classifiers

5.1. Decision tree algorithm

A decision tree [19] represents the information in the signal,
presented to it as features, in the form of a tree. Decision trees are
built recursively, following a top-down approach. A tree induced
using the C5.0 (or ID3 or C4.5) algorithm consists of a number of
branches, one root, a number of nodes and a number of leaves. One
branch is a chain of nodes from root to a leaf; and each node
E, Isomap, kPCA and Laplacian Eigenmap based dimensionality reduction techniques.

nsionality reduction techniques for the fault diagnosis of mono block
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involves one attribute. Classification is done through the decision
tree with its leaves representing the different conditions of the
mono block centrifugal pump.
5.1.1. The information gain and entropy reduction is calculated in
the following way

Information gain measures howwell a given attribute separates
the training examples according to their target classification. The
measure is used to select among the candidate features at each step
while growing the tree. Information gain is the expected reduction
in entropy caused by partitioning the samples according to this
feature.

Information gain (S, A) of a feature A relative to a collection of
examples S, is defined as

GainðS;AÞ ¼ EntropyðSÞ �
X

v˛ValueðAÞ

jSV j
jSj EntropyðSV Þ (15)

where Values(A) is the set of all possible values for attribute A, and
Sv is the subset of S for which feature A has value v (ie.,
Sv ¼ fs˛SjAðsÞ ¼ vg).

The first term in the equation for Gain is the entropy (measure of
disorder in the data) of the original collection S and the second term
is the expected value of the entropy after S is partitioned using
feature A. The expected entropy described by the second term is
simply the sum of the entropies of each subset Sv, weighed by the
Fig. 3. Three dimensional representation of centrifugal pump fault data set for LL

Please cite this article in press as: N.R. Sakthivel, et al., Comparison of dime
centrifugal pump using vibration signals, Engineering Science and Tec
j.jestch.2014.02.005
fraction of samples jSvj/jSj that belong to Sv. Gain(S, A) is therefore
the expected reduction in entropy caused by knowing the value of
feature A. Entropy is a measure of homogeneity of the set of ex-
amples and it is given by

EntropyðSÞ ¼
Xc
i¼1

�Pi log2Pi (16)

where c is the number of classes, pi is the proportion of S belonging
to class ‘i’.
5.2. Naïve Bayes algorithm [29]

The Naïve Bayes classifier is a highly practical Bayesian
learning method. The following description is based on the
discussion in Ref. [15]. The Naïve Bayes classifier applies to
learning tasks where each instance x is described by a
conjunction of attribute values and the target function f(x) can
take on any value from some finite set C. A set of training ex-
amples of the target function is provided, and a new instance is
presented, described by the tuple of attribute values (a1, a2,.,
an). The learner is asked to predict the target value, or classifi-
cation, for this new instance.

The Bayesian approach to classifying the new instance is to
assign the most probable target value, cMAP, given the attribute
values (a1, a2,., an) that describe the instance.
E, LTSA, manifold chart and MVU based dimensionality reduction techniques.
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cMAP ¼ argmax
cJ˛C

�
P
�
cj
��a1; a2;.; an

��
(17)

Using Bayes theorem,

cMAP ¼ argmax
cJ˛C

�
P
�
a1;a2;.; an

��cj�P�cj�
P
�
a1;a2;.; an

�
!

¼ argmax
cJ˛C

�
P
�
a1; a2; a3;.; anjcj

�
P
�
cj
�� (18)

The Naïve Bayes classifier makes the further simplifying
assumption that the attribute values are conditionally independent
given the target value. Therefore,

cNB ¼ argmax
cJ˛C

 
P
�
cj
�Y

i

P
�
aijcj

�!
(19)

where cNB denotes the target value output by the Naïve Bayes
classifier.

The conditional probabilities P(aijcj) need to be estimated from
the training set. The prior probabilities P(cj) also need to be fixed in
some fashion (typically by simply counting the frequencies from
the training set). The probabilities for differing hypotheses (classes)
can also be computed by normalizing the values received for each
hypothesis (class).

5.3. Bayes Net algorithm

Bayesian network [9] consists of a set of variables, V ¼ {A1, A2,.,
AN} and a set of directed edge, E, between variables, which form a
directed acyclic graph (DAG) G ¼ (V, E) where a joint distribution of
variables is represented by the product of conditional distributions
of each variable given its parents [3].Each node, Ai ∊ V represents a
random variable and a directed edge from Ai to Aj, (Ai, Aj) ∊ E, rep-
resents the conditional dependency between Ai and Aj. In a
Bayesian networks, each variable is independent on its non-
descendants, given a value of its parents in G. This independence
encoded in G reduces the number of parameters which is required
to characterize a joint distribution, so that posterior distribution
can be efficiently inferred.

In a Bayesian network over V ¼ {A1, A2,., An}, the joint distri-
bution P(V) is the product of all conditional distributions specified
in the Bayesian network such as

PðA1;A2;.;ANÞ ¼
YN
i¼1

PðAi=PaiÞ (20)

where, P(Ai/Pai) is the conditional distribution of Ai, given Pai which
denotes the parent set of Ai. A conditional distribution for each
variable has a parametric form that can be learnt by the maximum
likelihood estimation.

6. Results and discussion

The study of fault classification performance of mono block
centrifugal pump using traditional dimensionality reduction tech-
nique and nonlinear dimensionality reduction techniques is dis-
cussed in the following phases:

(i) Visual analysis of the reduced feature set.
(ii) Comparison of dimensionality reduction techniques with

decision tree, Bayes Net Naïve Bayes and kNN classifiers.
(iii) Comparison of the above results with a stand-alone decision

tree classifier.
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As can be seen from Figs. 2e4, different dimensionality reduc-
tion techniques offer differing degrees of separation of different
fault categories. From observation of the above Figs. 2e4 it is clear
that kPCA and PCA provide the maximum separation between
different fault categories hence combining these dimensionality
reduction techniques with a classifier is very likely to yield a high
degree of classification accuracy. On the other hand, Hessian LLE
based dimensionality reduction offers the least visual separation
between fault classes and hence is likely to result in very poor
classification accuracy when combined with a classifier. These
assertions on the likely impact of different dimensionality reduc-
tion techniques on the classification accuracy are verified with the
help of decision tree, naïve Bayes, Bayes Net and kNN classifiers in
the subsequent sections. Tables 1e4 show the classification accu-
racy obtained using decision tree, Bayes Net, Naïve Bayes and kNN
classifiers respectively, with various nonlinear dimensionality
reduction techniques and PCA. It must be noted that normalisation
is performed on all the features before the process of dimension-
ality reduction is carried out. From Tables 1e4 among the
nonlinear dimensionality reduction techniques and PCA, the PCA
outperforms when using decision tree, Bayes Net, Naïve Bayes and
kNN classifiers. In this work, the lowest accuracy is obtained by the
Hessian LLE transformed features with all the four classifiers. PCA-
decision tree classifier outperforms the other three classifiers,
namely, PCA-naïve Bayes, PCA-Bayes Net and PCA-kNN. Fig. 5
shows the plot of various dimensionality reduction techniques
and their percentage classification accuracy with decision tree,
naïve Bayes, Bayes Net and kNN classifiers. The overall classifica-
tion accuracy was found to be 99.45% for the PCA-decision tree
classifier, which is slightly higher than the overall classification
accuracy of PCA-kNN (99.43%), PCA-Naïve Bayes (99.3%) and PCA-
Bayes Net (99.18%) (Table 5).

The above results are also compared with the results obtained
during the same experimental setup using a stand-alone C4.5 de-
cision tree algorithm, as reported by the same author, [25]. Table 6
shows the results of % classification accuracy for the same data and
for the same statistical features that were extracted. It was
observed that reducing the dimensionality of the feature set to 3
was able to generate best classification accuracy for all the
dimensionality reduction techniques.

In PCA decision tree classifier, the application of PCA trans-
forms the original features of the data set into a reduced
number of uncorrelated features which are the principle com-
ponents. This results in a small loss of information contained
nsionality reduction techniques for the fault diagnosis of mono block
hnology, an International Journal (2014), http://dx.doi.org/10.1016/



Table 2
Tabulation of classification accuracy of mono block centrifugal pump for decision tree classifier with different nonlinear dimensionality reduction techniques and PCA.

Dimensionality reduction technique Hessian LLE Isomap Kernel PCA Laplacian Eigenmap LLE LTSA Manifold chart MVU PCA

Classifier: decision tree
GOOD 70 66.2 98.8 94.3 32.6 100 72.4 99.3 97.6
CAV 0 79.01 99.6 92.8 41.17 0 98 83.6 99.6
FB 14.4 92.7 100 97.2 92.4 100 100 99.5 99.6
BFIF 3.2 85.7 99.2 97.2 96.55 73.6 49.2 91.4 100
IF 10.4 93.8 98.4 94 55.36 0 100 100 100
SF 8 93.9 100 95.43 85.21 0 77.2 78.7 100
% Classification accuracy 15.9 85.21 99.33 95.18 67.22 45.6 82.8 92 99.45

Table 3
Tabulation of classification accuracy of Mono block centrifugal pump for Bayes Net classifier with different nonlinear dimensionality reduction techniques and PCA.

Dimensionality reduction technique Hessian LLE Isomap Kernel PCA Laplacian Eigenmap LLE LTSA Manifold chart MVU PCA

Classifier: Bayes Net
GOOD 100 24.8 95.2 72.9 21.7 23.5 74 100 97.6
CAV 0 75 99.6 78 32.4 36.4 99 90.3 99.2
FB 0 55.6 100 72.8 86.5 95.6 98 100 99.5
BFIF 0 71.4 98 75.6 29.3 13.5 52 38.8 99.2
IF 0 92 100 58.8 61.8 17.8 99.7 100 99.6
SF 0 61.2 95.2 64.8 22.48 88 78 46.7 100
% Classification accuracy 16.6 63.3333 98 70.55 42.36 45.8 83.45 79.3 99.18

Table 4
Tabulation of classification efficiency of mono block centrifugal pump for naïve Bayes classifier with different nonlinear dimensionality reduction techniques and PCA.

Dimensionality reduction technique Hessian LLE Isomap Kernel PCA Laplacian Eigenmap LLE LTSA Manifold chart MVU PCA

Classifier: Naïve Bayes
GOOD 30.4 0.6 91.6 6.6 5.4 100 43.2 100 97.6
CAV 9.2 99.55 98.8 31.2 56.3 0 98 91.6 99.6
FB 16.8 37.9 100 8 1.6 100 100 100 100
BFIF 10.4 0 98 15.6 23.27 73.6 48 23.3 98.8
IF 10.8 82.7 100 27.6 14.6 0 100 100 100
SF 15.6 27.8 90.8 5 2.4 0 61.2 52.07 100
% Classification accuracy 15.53 41.425 96.53 15.67 17.26 45.6 75.06 77.82 99.3

Fig. 5. Percentage classification accuracy for decision tree, naïve Bayes, Bayes Net and
kNN classifiers with different nonlinear dimensionality reduction techniques and PCA.

Table 5
Tabulation of classification efficiency of mono block centrifugal pump for kNN (1 NN) cl

Dimensionality reduction technique Hessian LLE Isomap Kernel PCA L

Classifier: kNN
GOOD 19.6 40.4 100
CAV 12.8 76.8 99.6
FB 20 48.8 100 1
BFIF 15.2 17.6 100
IF 16.4 86.8 98
SF 21.2 56.4 98
% Classification accuracy 17.53 54.47 99.23
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in the original data set. This is the reason attributed to the
slightly lower accuracy (while significantly reducing the
computational expense due to feature reduction) obtained in the
present study.
7. Conclusions and future directions

Condition monitoring of a mono block centrifugal is carried out
using vibration signals and the statistical features are extracted.
These features are transformed using dimensionality reduction
techniques and then, they are classified using decision tree, Bayes
Net and naïve Bayes classifiers. On observation of the results, it may
be concluded that among the various dimensionality reduction
techniques, the traditional dimensionality technique PCA gives
higher classification efficiency, for all the classifiers considered.
Among the classifiers, PCA-decision tree combination is found to be
more effective than all other dimensionality reduction techniquee
assifier with different nonlinear dimensionality reduction techniques and PCA.

aplacian Eigenmap LLE LTSA Manifold chart MVU PCA

82.8 79.6 88.4 70.4 83.6 99.3
96.8 86.8 98.4 97.2 90.8 98.2
00 90.4 100 100 92.4 100
99.2 98.4 92.4 98 99.2 99.1
97.6 84.8 99.2 100 88.8 100
86.4 72.4 85.2 95.6 76.4 100
93.8 89.5 93.93 93.53 92.86 99.43
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Table 6
Comparison of efficiency for various classifiers [25].

Classifier % Classification accuracy

Decision tree 100
PCA-kNN 99.43
PCA-decision tree 99.45
PCA-Naïve Bayes 99.30
PCA-Bayes Net 99.18

N.R. Sakthivel et al. / Engineering Science and Technology, an International Journal xxx (2014) 1e9 9
classifier combinations. From the results obtained, we may
conclude that nonlinear techniques for dimensionality reduction
are not capable of outperforming traditional linear techniques such
as PCA. Evaluation of recently developed dimensionality reduction
techniques such as sparse distance preserving embedding, sparse
proximity preserving embedding [38e40], Sparse local discrimi-
nant projections [43], dynamic transition embedding (DTE) [44]
and sparsity preserving projections [18] etc. for fault detection of
centrifugal pumps could also be carried out. A possible application
of the system proposed in the present study is a completely auto-
mated on-line pump condition monitoring system which can
automatically inform the operator of any faults, point out the faulty
part and hence, the maintenance may be carried out only when
there is a malfunction. This will help in significantly reducing the
maintenance overheads.
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