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a b s t r a c t

A locating-dominating set (LDS) of a graph G is a dominating set S of G such that
for every two vertices u and v in V (G) \ S, N(u) ∩ S ̸= N(v) ∩ S. The locating-
domination number γ L(G) is the minimum cardinality of a LDS of G. Further if S is
a total dominating set then S is called a locating-total dominating set. In this paper
we determine the domination, total domination, locating-domination and locating-total
domination numbers for hypertrees and sibling trees.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Domination arises in facility location problems, where the number of facilities such as hospitals or fire stations are fixed
and one attempts to minimize the distance that a person needs to travel to get to the closest facility. Total domination
plays a role in the problem of placing monitoring devices in a system in such a way that every site in the system,
including the monitors, is adjacent to a monitor site so that, if a monitor goes down, then an adjacent monitor can still
protect the system. Installing minimum number of expensive sensors in the system which will transmit a signal at the
detection of faults and uniquely determining the location of the faults motivate the concept of locating-dominating sets
and locating-total dominating sets [9].

In a parallel computer, the processors and interconnection networks are modeled by the graph G = (V , E), where
each processor is associated with a vertex of G and a direct communication link between two processors is indicated by
the existence of an edge between the associated vertices. Suppose we have limited resources such as disks, input–output
connections, or software modules, and we want to place a minimum number of these resource units at the processors,
so that every processor is adjacent to at least one resource unit, then finding such a placement involves constructing a
minimum dominating set for the graph G. Determining if an arbitrary graph has a dominating set [6], locating-dominating
set [2], and a locating total-dominating set [13] of a given size are well-known NP-complete problems. Occurrence of faulty
nodes in a device is inevitable. So, to diagnose these faults we make use of locating-total domination set in this system.
We place monitoring devices in a system in such a way that every site in the system (including the monitors) is adjacent
to a monitor site.
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Fig. 1. HT (3) with decimal labels and binary labels within braces.

Fig. 2. (a) HT ∗(3) by definition and (b) HT ∗(3) redrawn.

A set S of vertices in a graph G is called a dominating set of G if every vertex in V (G) \ S is adjacent to some vertex in
S. The set S is said to be a total dominating set of G if every vertex in V (G) is adjacent to some vertex in S. The minimum
cardinalities of a dominating set and a total dominating set of G are denoted as γ (G) and γt (G), respectively.

A locating-dominating set (LDS) in a connected graph G = (V , E) is a dominating set S of G such that for every pair of
vertices u and v in V (G) \ S, N(u)∩ S ̸= N(v)∩ S. The minimum cardinality of a locating-dominating set of G is called the
locating-domination number γ L(G) [9]. The locating-domination problem has been discussed for paths and cycles [3,5],
infinite grids [12], circulant graphs [7], fault-tolerant graphs [16] and so on.

A locating-total dominating set (LTDS) in a connected graph G = (V , E) is a total dominating set S of G such that for
every pair of vertices u and v in V (G)\ S, N(u)∩ S ̸= N(v)∩ S. The minimum cardinality of a locating total-dominating set
of G is called the locating-total domination number γ L

t (G) [9]. The locating-total domination problem has been discussed
for trees [4], cubic graphs and grid graphs [11], corona and composition of graphs [14], claw-free cubic graphs [10],
edge-critical graphs [1] and so on.

Tree structures are expansible in a natural way, and even unbalanced trees still retain most of the properties that
make the tree attractive. Additional links, however, are required to reduce the average distance between nodes and to
provide a more uniform message density in all links. An extensive search for the optimal placement of these additional
links has shown the half-ring binary trees such as hypertrees, sibling trees and christmas trees to be attractive contenders,
primarily because of their simple routing algorithms.

In this paper, we determine the domination, total domination, locating-domination and locating-total domination
numbers for hypertrees and sibling trees.

2. Domination in hypertrees

The basic skeleton of a hypertree is a complete binary tree Tn of height n. Here the nodes of the tree are numbered
as follows: The root node has label 1. The root is said to be at level 0. Labels of left and right children are formed by
appending a 0 and 1, respectively to the labels of the parent node. The decimal and binary labels of the hypertree are
given in Fig. 1. Here the children of the node x are labeled as 2x and 2x+ 1. Additional links in a hypertree are horizontal
and two nodes are joined in the same level i of the tree if their label difference is 2i−1. We denote an n-level hypertree
as HT (n). It has 2n+1

− 1 vertices and 3(2n
− 1) edges. Hypertree is a multiprocessor interconnection topology which has

a frequent data exchange in algorithms such as sorting and Fast Fourier Transforms (FFT ′s) [8]. The root-fault hypertree
HT ∗(n), n ≥ 2, is a graph obtained from HT (n) by deleting the root vertex [15]. See Fig. 2. The following lemma is obvious
from the definition of a hypertree.

Lemma 2.1. The hypertree HT (n), n ≥ 1, contains 2n−2 disjoint isomorphic copies of HT ∗(2) induced by the vertices of the
last two levels and 2n−3 disjoint isomorphic copies of HT ∗(3) induced by the vertices of the last three levels of HT (n).
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Fig. 3. Circled vertices constitute (a) a minimum dominating set of HT ∗(2), (b) a minimum locating-dominating set of HT ∗(2) and (c) a minimum
locating-dominating set of HT ∗(3).

Lemma 2.2. Let G be the root-fault hypertree HT ∗(2). Then γ (G) = γt (G) = 2.

Proof. Let S be a dominating set of G. We claim that |S| ≥ 2. Suppose not, let |S| = 1. Then there exists a vertex u in
S such that deg(u) = 5, a contradiction, since ∆(G) = 3. Hence |S| ≥ 2. Let S = {v, v′

} where deg(v) = deg(v′) = 3.
See Fig. 3(a). Now, N[v] ∪ N[v′

] = V (G) and hence |S| ≤ 2. Since v and v′ are adjacent in G, S is also a minimum total
dominating set of G. Therefore γ (G) = γt (G) = 2. □

Lemma 2.3. Let G be the root-fault hypertree HT ∗(2). Then γ L(G) = γ L
t (G) = 3.

Proof. Let S be a locating-dominating set of G. We claim that |S| ≥ 3. By Lemma 2.2, γ L(G) ≥ 2. Assume that |S| = 2.
Let S = {v, v′

} where deg(v) = deg(v′) = 3. Then N(v) = {a, b, v′
} and N(v′) = {a′, b′, v}. See Fig. 3(b). This implies

N(a)∩ S = {v} = N(b)∩ S. Suppose S = {a, b′
} then N(v)∩ S = {a} = N(a′)∩ S. Thus |S| ≥ 3. Now let S = {v, v′, a}. Then

N(a′)∩ S = {v′, a},N(b)∩ S = {v},N(b′)∩ S = {v′
} and N[S] = V (G). Hence γ L(G) ≤ 3. Since vertices v, v′ and a induce a

path on 3 vertices in G, S is also a minimum locating-total dominating set of G. Therefore γ L(G) = γ L
t (G) = 3. □

Lemma 2.4. Let G be the hypertree HT (n), n ≥ 1. Then any minimum dominating set of G contains at least 2n−1 vertices
from levels n − 1 and n.

Proof. Let S be a minimum dominating set of G. Vertices in levels n and n−1 of G induce 2n−2 copies of H , each isomorphic
to HT ∗(2). The worst case arises when both vertices of degree 3 in H are already dominated by vertices from G \ H . By
proof of Lemma 2.2, each copy contains at least 2 vertices of H . Hence S contains at least 2(2n−2) vertices from levels n
and n − 1 in G. □

Theorem 2.5. Let G be the hypertree HT (n), n ≥ 1. Then

γ (G) =

⎧⎪⎨⎪⎩
1
7 (2

n+2
+ 3) if n ≡ 0 (mod 3)

1
7 (2

n+2
− 1) if n ≡ 1 (mod 3)

2
7 (2

n+1
− 1) if n ≡ 2 (mod 3)

Proof. We prove the result by induction on n.
For n ≡ 0 (mod 3), let n = 3 and let S be a dominating set of HT (3). By Lemma 2.4, we need at least 4 vertices from

levels 3 and 2 in S. To dominate the root vertex, we need at least one vertex from level 1 in S or the root vertex itself has
to be included in S. Therefore |S| ≥ 5 = (1/7)(23+2

+ 3). Now we will prove the equality. Let S be the set of all vertices
comprising of all vertices in level 2 and the root vertex of HT (3). See Fig. 4. Since all the vertices of level 3 and level 1 are
adjacent to the vertices of level 2, S is a dominating set of HT (3). Therefore |S| ≤ 5 = (1/7)(23+2

+ 3). Assume that the
result is true for n = 3k, k ≥ 1. That is, γ (HT (3k)) = (1/7)(23k+2

+ 3). Consider HT (3k+ 3). By Lemma 2.1, there are 23k+1

vertex disjoint copies of HT ∗(2) in HT (3k + 3). Deletion of these subgraphs HT ∗(2) along with the vertices of HT (3k + 3)
adjacent to vertices of these subgraphs results in HT (3k). Therefore by Lemma 2.2, γ (HT (3k+ 3)) ≤ γ (HT (3k))+ 2(23k+1)
and by induction hypothesis, γ (HT (3k+ 3)) ≤ (1/7)(23k+2

+ 3)+ 2(23k+1) = (1/7)(2(3k+3)+2
+ 3). Now, let S and S1 be the

minimum dominating sets of HT (3k+3) and HT (3k), respectively. Let S2 ⊂ S be the vertex set which contains the vertices
from the last three levels of HT (3k+3). Similar to the argument for n = 3, any minimum dominating set contains at least
23k+2 vertices from levels 3k + 2 and 3k + 3. Therefore, γ (HT (3k + 3)) ≥

⏐⏐S1⏐⏐ +
⏐⏐S2⏐⏐ =

[
(1/7)(23k+2

+ 3)
]
+

[
23k+2

]
=

(1/7)(2(3k+3)+2
+ 3).

The case when n ≡ 1, 2 (mod 3) can be dealt with similarly. □
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Fig. 4. Circled vertices constitute a minimum dominating set S of HT (3).

Fig. 5. Circled vertices constitute (a) a minimum dominating set of HT (4) and (b) a minimum total dominating set of HT (4).

Remark 2.6. The dominating sets described in Theorem 2.5 for HT (n), when n ≡ 0, 2 (mod 3) do not contain any isolated
vertex. Let n = 3k+ 1, k ≥ 0. By Lemma 2.4, recursively every set of three levels from the bottom of HT (n) must contain
a minimum number of vertices from the last two levels to dominate all the three levels. Hence no minimum dominating
set of HT (n) contains any vertex from level 2. So far, the vertices of level 0 and level 1 are not dominated. Hence any
minimum dominating set contains at least one vertex either from level 0 or level 1. See Fig. 5(a). Now, to make it as a
total dominating set, any minimum total dominating set of HT (n) must include one more vertex either from level 0 or
level 1. See Fig. 5(b). These observations yield the following result.

Theorem 2.7. Let G be the hypertree HT (n), n ≥ 1. Then

γt (G) =

⎧⎪⎨⎪⎩
1
7 (2

n+2
+ 3) if n ≡ 0 (mod 3)

1
7 (2

n+2
− 1) + 1 if n ≡ 1 (mod 3)

2
7 (2

n+1
− 1) if n ≡ 2 (mod 3)

Remark 2.8. Let S be a dominating set of a graph G. A pair of vertices u and v of V (G) \ S is said to be located by S if
N(u) ∩ S ̸= N(v) ∩ S. We also say that S locates u and v. If S is a locating-dominating set, then S locates every pair of
vertices in V (G) \ S.

Lemma 2.9. Let G be the root-fault hypertree HT ∗(3). Then γ L(G) = γ L
t (G) = 6.

Proof. Let S be a locating-dominating set of G. Assume that |S| ≤ 5. The vertices u and v are the only two vertices of
degree 3 in G. We assume that u and v do not belong to S. It is easy to see that the removal of u and v disconnects G
into two components G1 and G2 which are isomorphic to HT ∗(2). See Fig. 3(c). We need at least 3 vertices each to locate
all the vertices in G1 and G2. This contradicts the cardinality of S. Suppose u and v belong to S, then we need at least 2
vertices in each of G1 and G2 to dominate G1 and G2. This again contradicts the cardinality of S. The case when either u
or v belongs to S is similar. Therefore γ L(G) ≥ 6. Label the vertices of G as in Fig. 3(c) and let S = {u1, u2, u3, u5, v1, v2}.
It is easy to check that S is a locating-dominating set of G. Further there are no isolated vertices in the subgraph induced
by S. Therefore S is also a locating-total dominating set of G. Hence γ L(G) = γ L

t (G) = 6. □

Lemma 2.10. Let G be the hypertree HT (n), n ≥ 3. Then any minimum locating-dominating set of G contains at least 2n−1

vertices from level n.

Proof. Let S be a minimum locating-dominating set of G. By Lemma 2.1, there are 2n−2 vertex disjoint copies of HT ∗(2)
induced by the vertices of levels n − 1 and n. Let H be one such HT ∗(2) as shown in Fig. 6. If x, u, y, v /∈ S then G does
not contain a locating-dominating set. This implies that at least one of x, u, y, v is in S. Suppose only x is in S, then a
and b are necessarily in S to dominate y and v. This accounts for a minimum of three vertices in S. On the other hand
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Fig. 6. Graph H is induced by the vertices a, b, x, y, u and v.

Fig. 7. Circled vertices constitute (a) a minimum locating-total dominating set of HT (2) and (b) a minimum locating-dominating set of HT (4).

suppose x and v are in S, then all the four vertices x, u, y and v are dominated. This implies that for S to be a minimum
locating-dominating set, one of the vertices in each of the edges xu and yv must be chosen in S. This is true for all the
2n−2 copies of HT ∗(2). In other words S contains at least 2(2n−2) = 2n−1 vertices of level n. □

Theorem 2.11. Let G be the hypertree HT (n), n ≥ 3. Then

γ L(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
5 (2

n+2
+ 1) if n ≡ 0 (mod 4)

1
5 (2

n+2
+ 2) if n ≡ 1 (mod 4)

1
5 (2

n+2
− 1) if n ≡ 2 (mod 4)

1
5 (2

n+2
− 2) if n ≡ 3 (mod 4)

Proof. We prove the result by induction on n.
For n ≡ 0 (mod 4), let n = 4 and S be a minimum locating-dominating set of HT (4). Let xu and yv be the edges in

HT (4) with vertices x, u, y, v in level 4 such that a is the parent of x and y, and b is the parent of u and v. By Lemma 2.10,
we need at least 8 vertices from level 4 in S. If {x, y} ⊂ S, then we need at least one vertex either from level 3 or level
2 to dominate the vertex b. If {x, v} ⊂ S, then to locate the vertices a and u we need at least one vertex either from
level 3 or from level 2. In either case, for four vertices in level 4, at least one vertex from level 3 or level 2 get included
in S. Since there are 16 vertices in level 4, at least 4 more vertices from level 3 and level 2 get included in S. However,
to dominate the root vertex we need at least one vertex from level 1 in S or the root vertex itself has to be included
in S. Therefore |S| ≥ 13. Now we will prove the equality. Let S be the set of all vertices in level 0 and level 2 together
with four alternate vertices beginning from left to right and the another 4 alternate vertices beginning from right to left
in level 4. See Fig. 7(b). Now, each vertex of level 1 are located by its children in level 2. Let x and y be two vertices
in level 3 which belongs to V (HT (4)) \ S. If x and y has different parent in level 2, then N(x) ∩ S ̸= N(y) ∩ S. If x and
y have same parent in level 2, then N(x) ∩ S ̸= N(y) ∩ S, since at least one child of x and y in level 4 are in S. Since S
contains one vertex from every edge of level 4, S is a locating-dominating set of HT (4). Therefore |S| ≤ 13. Thus, S is a
minimum locating-dominating set of HT (4) and hence γ L(HT (4)) = 13 = (1/5)(24+2

+ 1). Assume that the result is true
for n = 4k, k ≥ 1. That is, γ L(HT (4k)) = (1/5)(24k+2

+ 1). Consider HT (4k + 4). By Lemma 2.1, there are 24k+1 vertex
disjoint copies of HT ∗(3) in HT (4k+4). Deletion of these subgraphs HT ∗(3) along with the vertices of HT (4k+4) adjacent
to vertices of these subgraphs, results in HT (4k). Therefore by Lemma 2.9, γ L(HT (4k + 4)) ≤ γ L(HT (4k)) + 6(24k+1) and
by induction hypothesis, γ L(HT (4k + 4)) ≤ (1/5)(24k+2

+ 1) + 6(24k+1) = (1/5)(2(4k+4)+2
+ 1). Now, let S and S1 be the

minimum locating-dominating set of HT (4k + 4) and HT (4k), respectively. Let S2 ⊂ S be the vertex set which contains
the vertices from the last four levels of HT (4k+4). Similar to the argument for n = 4, any minimum locating-dominating
set contains at least 24k+3 vertices from level 4k + 4 and at least 24k+2 vertices from levels 4k + 3 and 4k + 2. Therefore,
γ L(HT (4k + 4)) ≥

⏐⏐S1⏐⏐ +
⏐⏐S2⏐⏐ =

[
(1/5)(24k+2

+ 1)
]
+

[
24k+3

+ 24k+2
]

= (1/5)(2(4k+2)+4
+ 1).

The cases when n ≡ 1, 2, 3 (mod 4) can be dealt with similarly. □
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Fig. 8. Circled vertices constitute a minimum locating-total dominating set of (a) HT (3) and (b) HT (4).

Remark 2.12. Theorem 2.11 holds good for n = 1, 2.

Lemma 2.13. Let G be the hypertree HT (n), n ≥ 1. Any minimum locating-total dominating set contains at least 3(2n−2)
vertices from levels n − 1 and n in G.

Proof. Let S be a minimum locating-total dominating set of G. Vertices in levels n and n − 1 of G induce 2n−2 copies of
H , each isomorphic to HT ∗(2). The worst case arises when both vertices of degree 3 in H are already located by vertices
from G \ H . By proof of Lemma 2.3, each copy contains at least 3 vertices of H . Hence S contains at least 3(2n−2) vertices
from levels n and n − 1 in G. □

Theorem 2.14. Let G be the hypertree HT (n), n ≥ 1. Then

γ L
t (G) =

⎧⎨⎩
1
7 (3(2

n+1) + 1) if n ≡ 0 (mod 3)
2
7 (3(2

n) + 1) if n ≡ 1 (mod 3)
3
7 (2

n+1
− 1) if n ≡ 2 (mod 3)

Proof. We prove the result by induction on n.
For n ≡ 0 (mod 3), let n = 3 and let S be a locating-total dominating set of HT (3). By Lemma 2.13, we need at least 6

vertices from levels 2 and 3 in S. To dominate the root vertex, we need at least 1 vertex from level 1. Thus γ L
t (HT (3)) ≥ 7.

Let S be the set of all vertices comprising of all vertices in level 2, one of the vertex in level 1 and two alternate vertices
beginning from left to right in level 3. See Fig. 8(a). Now, each vertex of level 2 are located by its children in level 3. Let x
and y be two vertices in level 4 which belongs to V (HT (3))\S. Let u and v be two vertices in level 4 such that u ∈ N(x) and
v ∈ N(y). If x and y have same parent, say w, in level 3 then N(x)∩S ̸= N(y)∩S since either u ∈ S or v ∈ S. If x and y have
different parent, say a and b, respectively. In this case there are two chances either u and v not belonging to S or any one of
them belonging to S. If {u, v} ̸⊂ S, then N(x)∩S ̸= N(y)∩S since N(x)∩S = {a} and N(y)∩S = {b}. If u ∈ S and v /∈ S, then
N(x)∩S ̸= N(y)∩S since N(x)∩S = {a, u} and N(y)∩S = {b}. Also it is easy to see that the vertices in level 1 are located by
S. Thus S is a locating-total dominating set of HT (4). Therefore γ L

t (HT (3)) ≤ 7 = (1/7)(3(23+1)+1). Assume that the result
is true for n = 3k, k ≥ 1. That is, γ L

t (HT (3k)) = (1/7)(3(23k+1) + 1). Consider HT (3k + 3). By Lemma 2.1, there are 23k+1

vertex disjoint copies of HT ∗(2) in HT (3k + 3). Deletion of these subgraphs HT ∗(2) along with the vertices of HT (3k + 3)
adjacent to vertices of these subgraphs results in HT (3k). Therefore by Lemma 2.3, γ L

t (HT (3k+3)) ≤ γ L
t (HT (3k))+3(23k+1)

and by induction hypothesis, γ L
t (HT (3k + 3)) ≤ (1/7)(3(23k+1) + 1) + 6(23k) = (1/7)(3(2(3k+3)+1) + 1). Now, let S and

S1 be the minimum locating-total dominating set of HT (3k + 3) and HT (3k), respectively. Let S2 ⊂ S be the vertex
set which contains the vertices from the last three levels of HT (3k + 3). Similar to the argument for n = 3, any
minimum locating-total dominating set contains at least 3(23k+1) vertices from levels 3k + 3 and 3k + 2. Therefore,
γ L
t (HT (3k + 3)) ≥

⏐⏐S1⏐⏐ +
⏐⏐S2⏐⏐ =

[
(1/7)(3(23k+1) + 1)

]
+

[
23k+2

+ 23k+1
]

= (1/7)(3(2(3k+3)+1) + 1).
The case when n ≡ 1 (mod 4) can be dealt with similarly. For illustration, the locating-total dominating set of HT (4)

is given in Fig. 8(b).
The case when n ≡ 2 (mod 3) is similar with S = {2, 3, 4} being the minimum locating-total dominating set of HT (2)

as the base case. See Fig. 7(a). □

3. Domination in sibling trees

Sibling tree is obtained from the complete binary tree Tn by adding edges (sibling edges) between left and right children
of the same parent node. Here the nodes of the sibling tree are numbered as follows: The root node has label 1. The root
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Fig. 9. ST3 with decimal label.

is said to be at level 0. Here the children of the nodes x are labeled as 2x and 2x + 1. See Fig. 9. We denote an n-level
sibling tree as STn. It has 2n+1

− 1 vertices and 3(2n
− 1) edges. For each i, 1 ≤ i ≤ n, let Vi denote the vertex set in level

i, with
⏐⏐Vi

⏐⏐ = 2i. We call the edges in level n as terminal edges and the vertices incident on them as terminal vertices.
The following lemma is obvious from the definition of a sibling tree.

Lemma 3.1. Let G be the sibling tree ST2. Then γ (G) = γt (G) = 2.

Proof. Let S be a dominating set of G. We claim that |S| ≥ 2. Suppose not, let |S| = 1. Then there exists a vertex u in S
such that deg(u) = 6, a contradiction since ∆(G) = 4. Hence |S| ≥ 2. Let S = V1. Then N[S] = V (G) and hence |S| ≤ 2.
Since the vertices in V1 are adjacent in G, S is also a minimum total dominating set of G. Therefore γ (G) = γt (G) = 2. □

The proof of the following lemma is similar to that of Lemma 2.4 and hence is omitted.

Lemma 3.2. Let G be the sibling tree STn, n ≥ 1. Then any minimum dominating set of G contains at least 2n−1 vertices from
levels n − 1 and n.

Using Lemmas 3.1 and 3.2, we will prove the following theorem and the proof is similar to that of Theorem 2.5 and
hence is omitted.

Theorem 3.3. Let G be the sibling tree STn, n ≥ 1. Then

γ (G) =

⎧⎪⎨⎪⎩
1
7 (2

n+2
+ 3) if n ≡ 0 (mod 3)

1
7 (2

n+2
− 1) if n ≡ 1 (mod 3)

2
7 (2

n+1
− 1) if n ≡ 2 (mod 3)

Remark 3.4. The dominating sets described in Theorem 3.3 for STn, when n ≡ 0, 2 (mod 3) do not contain any isolated
vertex. Let n = 3k + 1, k ≥ 0. By Lemma 3.2, recursively every set of three levels from the bottom of STn must contain
a minimum number of vertices from the last two levels to dominate all the three levels. Hence no minimum dominating
set of STn contains any vertex from level 2. So far, the vertices of level 0 and level 1 are not dominated. Hence any
minimum dominating set contains at least one vertex either from level 0 or level 1. See Fig. 10(a). Now, to make it as a
total dominating set, any minimum total dominating set of STn must include one more vertex either from level 0 or level
1. See Fig. 10(b). These observations yield the following result.

Theorem 3.5. Let G be the sibling tree STn, n ≥ 1. Then

γt (G) =

⎧⎪⎨⎪⎩
1
7 (2

n+2
+ 3) if n ≡ 0 (mod 3)

1
7 (2

n+2
− 1) + 1 if n ≡ 1 (mod 3)

2
7 (2

n+1
− 1) if n ≡ 2 (mod 3)

Lemma 3.6. Let G be the sibling tree ST3. Then γ L(G) = 6.

Proof. Let S be a locating-dominating set of G. We claim |S| ≥ 6. From each terminal edge uv, at least one vertex of it
should belong to S, otherwise N(u) ∩ S = N(v) ∩ S, a contradiction. Thus |S| ≥ 4. The terminal vertices do not dominate
the vertices in V0 and V1. Hence |S| ≥ 5. Suppose |S| = 5. Let w be the non terminal vertex in S. If w is in V2, then the
root vertex is not dominated. On the other hand, if w is in level 0 or 1, then the other two vertices x and y in V0 ∪ V1 are
such that N(x) ∩ S = N(y) ∩ S, a contradiction. Hence |S| ≥ 6. □

The proof of the following lemma is similar to that of Lemma 2.10 and hence is omitted.

Lemma 3.7. Let G be the sibling tree STn, n ≥ 1. Then any minimum locating-dominating set of G contains at least 2n−1

vertices of G from level n.



Please cite this article as: I. Rajasingh, R. Jayagopal and R.S. Rajan, Domination parameters in hypertrees and sibling trees, Discrete Applied Mathematics
(2020), https://doi.org/10.1016/j.dam.2020.01.008.

8 I. Rajasingh, R. Jayagopal and R.S. Rajan / Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 10. Circled vertices constitute (a) a minimum dominating set of ST 4 and (b) a minimum total dominating set of ST 4 .

Fig. 11. Circled vertices constitute (a) a minimum locating-total dominating set of ST 2 and (b) a minimum locating-total dominating set of ST 3 .

Using Lemmas 3.6 and 3.7, we will prove the following theorem and the proof is similar to that of Theorem 2.11 and
hence is omitted.

Theorem 3.8. Let G be the sibling tree STn, n ≥ 1. Then

γ L(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
5 (2

n+2
+ 1) if n ≡ 0 (mod 4)

1
5 (2

n+2
+ 2) if n ≡ 1 (mod 4)

1
5 (2

n+2
− 1) if n ≡ 2 (mod 4)

1
5 (2

n+2
− 2) if n ≡ 3 (mod 4)

Lemma 3.9. Let G be the sibling tree ST2. Then γ L
t (G) = 4.

Proof. Let S be a locating-total dominating set of G. We see that at least one vertex from each terminal edge should
belong to S in order to locate the vertices in level n distinctly. Let u and v be the selected vertices , one each from the two
terminal edges. Since u and v are isolated vertices in a subgraph induced by S, to obtain a total domination, we need at
least two vertices x and y such that {ux, vy} ∈ E(G). Hence γt (ST2) ≥ 4. Let S = V1∪{u, v}. Then clearly S is a locating-total
dominating set of G. See Fig. 11(a). Therefore γ L

t (G) = 4. □

Lemma 3.10. Let G be the sibling tree STn, n ≥ 1. Any minimum locating-total dominating set of G contains at least 2n

vertices from levels n − 1 and n.

Proof. Let S be a minimum locating-total dominating set of G. The vertices in levels n and n − 1 induce a subgraph H
consisting of 2n copies of complete graph K3. The worst case arises when the vertices in level n − 1 are already located
by vertices in G \ H . However, every K3 should contain 2 vertices of S. □

Theorem 3.11. Let G be the sibling tree STn, n ≥ 1. Then

γ L
t (G) =

⎧⎪⎨⎪⎩
1
7 (2

n+3
− 1) if n ≡ 0 (mod 3)

1
7 (2

n+3
− 2) if n ≡ 1 (mod 3)

1
7 (2

n+3
− 4) if n ≡ 2 (mod 3)

Proof. We prove the result by induction on n.
For n ≡ 0 (mod 3), let n = 3 and let S be a locating-total dominating set of ST3. By Lemma 3.10, we need 8 vertices

from levels 3 and 2 in S. To dominate the root vertex, we need at least 1 vertex from level 1. Thus |S| ≥ 9. Now we will



Please cite this article as: I. Rajasingh, R. Jayagopal and R.S. Rajan, Domination parameters in hypertrees and sibling trees, Discrete Applied Mathematics
(2020), https://doi.org/10.1016/j.dam.2020.01.008.

I. Rajasingh, R. Jayagopal and R.S. Rajan / Discrete Applied Mathematics xxx (xxxx) xxx 9

prove the equality. Let S be the set of all vertices comprising of all vertices in level 2 and the alternate vertices beginning
from left to right in level 3. See Fig. 11(b). Let x and y be two vertices in level 3 which belongs to V (HT (3)) \ S. If x
and y have same parent, then N(x) ∩ S ̸= N(y) ∩ S since either x ∈ S or y ∈ S. If x and y have different parent, then
N(x) ∩ S ̸= N(y) ∩ S since one vertex from every edge in level 3 belongs to S. Also it is easy to see that the vertices in
level 0 and level 1 are located by S. Thus S is a locating-total dominating set of HT (4). Therefore |S| ≤ 9 = (23+3

− 1)/7.
Assume that the result is true for n = 3k, k ≥ 1. Consider ST3k+3. Deletion of vertices in levels 3k + 1, 3k + 2 and
3k + 3 in ST3k+3 yields ST3k. By induction hypothesis, γ L

t (ST3k) = (1/7)(23k+3
− 1). There are 23k+1 vertex disjoint copies

of ST2 in the subgraph induced by vertices in the levels 3k + 1, 3k + 2 and 3k + 3 of ST3k+3. Therefore by Lemma 3.9,
γ L
t (ST3k+3) ≤ (1/7)(23k+3

−1)+4(23k+1) = (1/7)(2(3k+3)+3
−1). Now, let S and S1 be the minimum locating-total dominating

set of ST3k+3 and ST3k, respectively. Let S2 ⊂ S be the vertex set which contains the vertices from the last three levels
of ST3k+3. Similar to the argument for n = 3, any minimum locating-total dominating set contains at least 23k+3 vertices
from levels 3k + 3 and 3k + 2. Therefore γ L

t (ST3k+3) ≥
⏐⏐S1⏐⏐ +

⏐⏐S2⏐⏐ =
[
(1/7)(23k+3

− 1)
]
+

[
23k+3

]
= (1/7)(2(3k+3)+3

− 1).
The case when n ≡ 1, 2 (mod 3) can be dealt with similarly. □

4. Conclusion

In this paper, we have proved that γ (G) = γt (G) when G is a hypertree HT (n), n ≡ 0, 2 (mod 3) and γ (G) = γt (G) − 1
when G is HT (n), n ≡ 1 (mod 3). We have also computed γ L(HT (n)) and γ L

t (HT (n)), n ≥ 1. We have obtained similar results
for sibling tree STn for n ≥ 1. Finding classes of graphs G with γ (G) = γt (G) = γ L(G) = γ L

t (G) is under investigation.
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