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Ethanol and Hydrogen Gas-Sensing Properties of

CuO–CuFe2O4 Nanostructured Thin Films
Saptarshi De , Narayanan Venkataramani , Senior Member, IEEE, Shiva Prasad , Rajiv Onkar Dusane,

Lionel Presmanes, Yohann Thimont, Philippe Tailhades, Valérie Baco-Carles, Corine Bonningue,

Sumangala Thondiyanoor Pisharam, and Antoine Barnabé

Abstract— Nanocrystalline CuO–CuFe2O4 composite thin
films were developed from CuFeO2 ceramic target using a radio-
frequency sputtering method followed by a thermal oxidation
process. This fabrication process helps to develop porous sensing
layers which are highly desirable for solid-state resistive gas sen-
sors. Their sensing properties toward ethanol and hydrogen gas
in dry air were examined at the operating temperatures ranging
from 250 °C to 500 °C. The electrical transients during adsorption
and desorption of the test gases were fitted with the Langmuir
single site gas adsorption model. A composite thin film with a
total thickness of 25 nm showed highest response (79%) toward
hydrogen (500 ppm) at the operating temperature of 400 °C. The
shortest response time (τres) was found to be ∼60 and ∼90 s
for hydrogen and ethanol, respectively. The dependence of the
response of the sensor on gas concentration (10–500 ppm) was
also studied.

Index Terms— Ethanol, gas sensor, hydrogen, nanocrystalline
CuO–CuFe2O4, thin film.

I. INTRODUCTION

METAL oxide semiconductors (MOS), such as pure CuO

phase or CuO coupled with other MOS in a composite

material, have been used as sensor materials for many years

for the detection of reducing gases such as hydrogen [1], [2],

ethanol [3]–[7], CO [8], [9], and H2S [10]–[12]. Recently,

various nano structures of CuO like one-dimensional (1D)

nano wire and thin films have caught attention due to high

surface to volume ratio which is expected to enhance the

performance of the devices based on semiconductor nano

structures [13]. Porous CuO nano wires [14], CuO/ZnO hetero

contact sensors [15] and Zn doped CuO nano wires [16]

were reported for improving H2 detection. In addition with all
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the gases listed above, CuO can also be interesting for CO2

detection [17]. On the other hand, copper based spinel oxides

such as copper ferrite (CuFe2O4) having n-type semiconductor

properties was also reported to show response toward H2 [18],

LPG [19] and ethanol [20]. In our previous work, maximum

response (1R/R) of 86% was obtained by CuFe2O4 nano

powder toward 500 ppm of ethanol [21], and this pure copper

ferrite also showed a good response of 10% toward CO2 [22].

Semiconductor nano composites with p–n junction were

reported as a subject of interest for gas sensing regarding

operating temperature (O.T.) and response. In particular, many

authors have studied the combination of p-type CuO with

various n-type oxides for CO2 detection [23]–[26]. In the

recent past, CuO/CuFe2O4 composite thin films [27] and

powders [22] having spinel phase were also reported as CO2

gas sensing material.

In this work, nanocrystalline CuO–CuFe2O4 semiconduc-

tor thin films were developed from CuFeO2 ceramic target

using a radio-frequency (RF) sputtering method followed by a

thermal oxidation process. This fabrication process may help

to develop porous sensing layers which are highly desirable

for solid state resistive gas sensors. These films were used

as the sensitive material for reducing gases like hydrogen

and ethanol. The effect of the operating temperature on the

response, response time and recovery time of the active layer

were studied to evaluate the merit of performance of the

material. The effect of gas flow rate on the response time

and recovery time of the active layer were also studied.

To demonstrate its potential sensing application, the variation

of response with different gas concentration has been shown.

Here, the minimum operating temperature was chosen as

250 °C to avoid the effect of moisture on sensor samples

during practical gas sensing application. We also tried to

generate the values of activation energy for the gas (H2)

adsorption and intrinsic reaction on CuO thin film surface

using Langmuir gas adsorption model, which may be useful

in future to compare with other sensing material and gases for

analysing the gas sensing properties.

II. PREPARATION OF THE GAS SENSITIVE LAYERS

Cu–CuxFe3−xO4 thin films were first deposited on fused

silica substrate at room temperature with Alcatel A450 RF

sputtering unit using a pure delafossite (CuFeO2) ceramic

target. The details of the deposition procedure were described
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TABLE I

DEPOSITION PARAMETERS FOR THE SPUTTERING

by Barnabé et al. [28]. Process parameters for the room

temperature deposited samples are given in Table I. Two

films having thicknesses 25 nm and 300 nm were deposited

by varying the deposition time. Thickness of the deposited

films was measured using a Dektak 3030ST profilometer and

cross-sectional scanning electron microscopy (SEM) using

JEOL JSM 6700F field emission SEM. Our previous studies

(i.e. grazing incidence X-ray diffraction (GI-XRD), Raman

spectroscopy and electron probe micro analysis (EPMA)) on

the same samples have already revealed that the as-deposited

films consisted of copper nano particles which were embedded

in an oxide matrix which was made of cuprous oxide and

mixed valence defect ferrite (Cu2O, CuxFe3−xO4) [28], [29]

(Equation 1a). In order to obtain the stable CuO/CuFe2O4

nano composite, the as-deposited films were ex-situ annealed

at 550 °C in air for 12 h (Equation 1b). The tenorite phase CuO

then originated from the oxidation of the metallic copper in

association with that of Cu2O. One can note that the reaction

scheme could be more complex if we consider the formation

of CuFeO2 intermediate phase [29]. The annealing treatment

of the as-deposited samples starting from delafossite target can

be represented by the following simplified reaction scheme:

1) reduction during deposition step

CuFeO2 → x Cu + (1 − x)/2 Cu2O + (9 − x)/24

Fe24/(9−x)O4 + x/3 O2

(Target) (as-deposited film) (1a)

2) oxidation during post deposition annealing

x Cu + (1 − x)/2 Cu2O + (9 − x)/24

Fe24/(9−x)O4 + (4x + 3)/12 O2

→ x/2 CuO + x/2 CuFe2O4

(as-deposited film) (annealed film) (1b)

The SEM image in figure 1 shows that, as a result of anneal-

ing, the parent films were self-organized in a two layered stack

with top to bottom layer thickness ratio of 1:2. These films

were characterized by GI-XRD technique and Glow-discharge

optical emission spectroscopy (GD-OES) profile [27] and

X-ray photo electron spectroscopy (XPS) [29] which con-

firmed that the top layer was tenorite CuO and that of the

bottom layer was spinel CuFe2O4.

Interestingly, a 30% increase in the total thickness of the

as-deposited thin film was observed after annealing which

was possibly due to the porosity developed during post-

deposition annealing [29]. This porosity in the two layered

stack might be caused by the metallic copper diffusion during

Fig. 1. FE-SEM micrographs (a) plain view and (b) cross section view of
the sample annealed at 550 °C for 12 hours in air.

the oxidation process of the as-deposited samples. For thin film

semiconductor metal oxide based gas sensors, the porosity of

the sensing layer is an important parameter [30] as the gas

diffusion through the porosity can cause changes in electrical

properties of the films, making the gas detection easier.

III. GAS SENSING MEASUREMENTS

Gas sensing experiments were carried out in a closed

chamber with controlled operating temperature from

250 °C to 500 °C using a PID controller. The ambient gas

environment was controlled by a continuous flow of the

calibrated test gases or air using mass flow controller. For the

hydrogen sensing, two gas cylinders were used- one with just

zero air (moisture < 0.01%) and another with same zero air

containing 500 ppm of hydrogen. The sensor samples were

stabilized at each operating temperatures for at least 12 hours

in zero air, prior to the gas sensing experiment. Resistance-

transients of the sensing layer were measured in two probes

mode using Keithley 2635B source meter. Similarly, for

the ethanol sensing experiments, two gas cylinders were

used, one with zero air and another with the same zero air

containing 500 ppm of ethanol. The response (Rs) of the

sensor samples is defined as the relative difference of the film

resistance between air and test gas atmosphere (Rgas-Rair)/

Rair×100%, where Rgas and Rair are saturated resistance of

the sensor in test gas atmosphere and in air respectively. The

concentration of the test gases (Cgas in chamber) in the gas

chamber was varied by diluting with zero air, and it can be

calculated using the following relation:

Cgas in chamber

= [Ctest gasx(dVtest/dt)]/[(dVtest/dt) + (dV zero air/dt)] (2)

Where Ctest gas is the concentration of the test gas in gas

cylinder and dVtest/dt is the volumetric flow rate of test gas,

similarly dVzeroair/dt is the volumetric flow rate of zero air.

IV. RESULTS AND DISCUSSION

Figure 2 shows the resistance-transients during the insertion

of hydrogen (500 ppm) and recovery in air of the 25 nm

thin film sensor at the operating temperature of 400 °C with

100 cc/min gas-flow rate. The sensing material showed good

repeatability as the initial baseline was regained upon exposure

to dry air. The increase in the electrical resistance of the



Fig. 2. Resistance-transients (response and recovery) of the 25 nm thin film
sensor at the operating temperature of 400 °C with 100 cc/min flow rate,
fittings are shown in coloured lines.

Fig. 3. Schematic of the proposed sensing mechanism- (a) during stabilization
of the sensor material (oxygen adsorption); (b) during sensing of the test gas
(e.g. hydrogen).

sensors upon exposure to a reducing gas such as H2 indicates

that the obtained films have p-type semiconducting behaviour.

It could be possible that only CuO is involved in sensing as

it is the top layer.

The following reaction mechanism for the sensing of reduc-

ing gas by a p-type semiconductor can be summarized from

several research reports [3]. In a first step, at the operating

temperature, oxygen is physisorbed on the sensor surface

followed by electron transfer from the p-type semiconducting

oxide CuO to the adsorbed oxygen, thus forming chemical

bond between the adsorbed oxygen and the semiconducting

oxide. Thus, the electrical resistance of the p-type semicon-

ductors reduces during stabilization of the sensor material

[see figure (3.a)].

These reactions are described in equations (3) and (4)

respectively

1

2
O2 + [sensorsurface] ↔ Oad-surface (physisorption) (3)

Oad-surface + e− ↔ O−
ad (chemisorption) (4)

When the sensor is exposed to reducing gas ambient,

the reducing gas is physically adsorbed on the active layer

surface and reacts with the adsorbed oxygen according to the

reaction (5) & (6) and the product (RO) goes out [eq. 7]

[see figure (3.b)]. Thus, the resistance of the p-type sensor

TABLE II

VARIATION IN RESPONSE TIME AND RECOVERY TIME WITH GAS-FLOW

RATE AT A FIXED OPERATING TEMPERATURE (500 °C);
25 nm COMPOSITE THIN FILM

increases.

R + [sensor] ↔ Rad(physisorption) (5)

Rad + O−
ad ↔ ROad + e− (6)

ROad ↔ ROgas↑ + [sensorsurface] (7)

Out of these reactions, the physisorption of oxygen as well

as that of the reducing gas [Eq. (3) and (5)] are fast. On the

other hand the reaction between the adsorbed gas and oxygen

[Eq. (6)] is a slow process and therefore, the last one is

the rate determining step for the response kinetics. This is

easily corroborated from the reported data on surface reaction

of adsorbed oxygen [31] and hydrogen [32]. According to

Ahn et al. [31], the ratio of surface reaction rate constant to

adsorption rate constant at adsorption equilibrium for oxida-

tion of sulphur dioxide is 0.5, and Arrua et al. [32] reported

the same ratio for hydrogenation using Pd/Al2O3 catalyst in

the range of 0.26-0.29. Assuming Langmuir single site gas

adsorption model for the thin film sensors [33], the response

and the recovery transients were fitted well with the following

two equations (eq. 8, 9) respectively (shown in coloured lines

in fig. 2). The values of coefficient of determination (R2) in

this fitting for all response or recovery curves were in between

0.985-0.999.

R(t)response = Rair + R1[1 − exp (−t/τres)] (8)

R(t)recovery = Rair + R1[exp (−t/τrec)] (9)

Where τres and τrec are the ‘response time’ and ‘recovery

time’ respectively. And R1 is a proportionality constant of the

exponential term whose value is equal to the difference of the

film resistance between air and test gas atmosphere (Rgas-Rair).

The variation of response and recovery time with gas flow

rate was observed and tabulated in Table II. Decrease in

response and recovery time with gas flow rate indicates a mass

transfer controlled reaction kinetics on this thin film surface.

Therefore, the flow rate was kept fixed at 100 cc/min for the

rest of the experiments performed.

Hydrogen sensing by a 25 nm thin film sensor was carried

out at different operating temperatures and the variation of

response time and recovery time are given in the table III.

Response time seemed to be saturated above the operating

temperature of 350 °C and the saturated value was found to

be around 60 seconds. At the high operating temperatures,

the reaction rate of eq. (6) became faster and the reaction

might be limited by the test conditions, i.e., gas flow in the

gas chamber. Recovery time decreased monotonically with the

operating temperature until 500 °C.



TABLE III

VARIATION IN RESPONSE TIME AND RECOVERY TIME OF 25 nm THIN

FILM SENSOR WITH THE OPERATING TEMPERATURE (TEST GAS:
500 ppm OF H2 WITH 100 cc/min FLOW RATE)

Fig. 4. Experimental and simulated response vs. operating temperature
of 25 nm composite thin film (test gas: 500 ppm of H2 with 100 cc/min
flow rate).

The bell shaped response curve with the operating tem-

perature as shown in the figure 4 is a result of the com-

petitive behaviour of eqs. (5) and (6). Similar bell shaped

response curve had been reported by Ahlers et al. [34] and

Biswas and Pramanik [35]. According to them, response varies

with operating temperature on the basis of two energy systems.

Eads is dependent on the strength of the test gas binding onto

the sensing material surface. On the other hand, Ea is defined

as the energy barrier required to be overcome by the adsorbed

gas molecules for diffusion along the surface, resulting in

catalysis induced surface combustion process. Initially, under

clean air conditions, active sites on the surface of a sensor

material had been covered by adsorbed oxygen. Then, relative

occupancy of the test gas on the pre-adsorbed oxygen depends

on partial pressure and operating temperature of the test gas.

In the figure 4, simulated curves of Langmuir relative surface

coverage (L), reaction rate (K) and the modeled response (Rm)

are shown. Here,

L =
Pgas

Pgas + Po
(10)

where Pgas is partial pressure of test gas (H2) at sensing

layer and Po = kBT
Vo

exp (−Eads
kBT

), where vo is the quantum

volume of the test gas species, given by vo = ( 2π h̄2

MgasMokBT
)
1.5

,

where Mgas is the relative atomic mass of the test gas

(i.e. 2 for H2); Mo is the atomic mass unit (1.67 × 10−27 kg);

TABLE IV

CHANGE IN RESPONSE TIME AND RECOVERY TIME OF 25 nm THIN FILM

SENSING MATERIAL WITH THE OPERATING TEMPERATURE (TEST

GAS: 500 ppm OF ETHANOL WITH 100 cc/min FLOW RATE)

h̄ is the reduced plank constant and kB, T are Boltzmann

constant and absolute temperature respectively. The reaction

rate of adsorbed test gas with chemisorbed oxygen ion is

K = A exp (
−Ea

kBT
) (11)

where A is a proportionality constant. The modeled response

was obtained from the combination of Langmuir relative

surface coverage and the reaction rate [34], and it could be

given by

Rm =
Pgas

Pgas+kBT
Vo

exp(−Eads
kBT

)
A exp

�

−Ea

kBT

�

(12)

In the case of tin dioxide (SnO2) thin film sensors, the

values of Eads varied from 130 to 145 kJ/mol (1.3-1.45 eV) and

Ea varied from 53 to 57 kJ/mol (0.53-0.57 eV) for different

ethane concentrations [34]. Here, the values Eads and Ea were

obtained (by the fitting of experimental values with eq. 12) as

43 kJ/mol (0.45 eV) and 21 kJ/mol (0.22 eV) respectively.

This sensor sample showed maximum response of 79% at

the operating temperature of 400 °C toward 500 ppm of H2.

A similar response of 70% was reported for H2 but at a

higher concentration (2500 ppm) with thicker copper oxide–

copper ferrite sensor system [36]. Hoa et al. [2] reported

40% response toward 10,000 ppm of H2 at an operating

temperature of 250 °C for CuO thin film, whereas at the same

operating temperature, this CuO/CuFe2O4 thin film exhibits

45% response only at 500 ppm of H2.

Similarly, ethanol sensing of the 25 nm thin film sensor was

carried out at different operating temperatures and the variation

of response time and recovery time are given in the table IV.

Response time seemed to be saturated above the operating

temperature of 450 °C and the value of that was found to

be around 90 seconds. It was observed that the recovery time

decreased to the range of 350 to 400 °C and after that it had

increased. This increase at 500 °C is not well understood at

present. Figure 5 shows the variation of response with operat-

ing temperature. In case of ethanol, the maximum response of

this thin film sensor might be observed above 500 °C. As per

literature, the best operating temperature to get maximum

response for ethanol was reported to be higher than that of

hydrogen [37]. The operating temperature was confined below

500 °C due to the (a) stability of the phase and microstructure

in sensing layers and (b) instrumental limitation. Hence we

may not be able to capture a similar behaviour as found in H2.



Fig. 5. Response vs. operating temperature of 25 nm thin film sensing
material (test gas: 500 ppm of ethanol with 100 cc/min flow rate).

TABLE V

RESPONSE TIME, RECOVERY TIME AND RESPONSE VS. FILM-THICKNESS

Here, due to lack of the bell shape in the response curve,

it could not be fitted with the chosen model (eq.12).

The gas sensing experiment was carried out with 300 nm

thick film and the results are tabulated in table V. Thicker

CuO–CuFe2O4 thin film showed p-type response toward

reducing gases, i.e., hydrogen and ethanol. So, the test

gases were mostly interacting (adsorption/desorption) with the

copper oxide layer located on the top of film.

Depending on the operating temperature, oxygen molecules

adsorbed on semiconductor surface are in various ionic states,

i.e. O−
2 , O− or O2− [38]. So, adsorbed hydrogen (H2ads)

may react with adsorbed oxygen (Oion
ads) as in the following

equations.

2H2 ads + O2
−

ads → 2H2O + e− (13)

or,

H2 ads + O−
ads → H2O + e− (14)

or,

H2 ads + O2−
ads → H2O + 2e− (15)

Similarly, carbon dioxide and water are the final decom-

position products of ethanol combustion in air. Acetalde-

hyde or acetic acid may also form as intermediate products

during the oxidization of ethanol. Hence depending on the

types of adsorbed oxygen and by-products of ethanol, vari-

ous charge balance equations of ethanol decomposition are

possible and given below.

2CH3CH2OHads + O2
−

ads → 2CH3CHO + 2H2O + e−

CH3CH2OHads + O−
ads → CH3CHO + H2O + e−

CH3CH2OHads + O2−
ads → CH3CHO + H2O + 2e−

CH3CH2OHads + O2
−

ads → CH3COOH + H2O + 1e−

CH3CH2OHads + 2O−
ads → CH3COOH + H2O + 2e−

CH3CH2OHads + 2O2−
ads → CH3COOH + H2O + 4e−

CH3CH2OHads + 3O2
−

ads → 2CO2 + 3H2O + 3e−

CH3CH2OHads + 6O−
ads → 2CO2 + 3H2O + 6e−

CH3CH2OHads + 6O2−
ads → 2CO2 + 3H2O + 12e−

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(16)

From equations (13), (14) and (15), for all metal oxide sensors

a general rate equation of electron density can be written as

dn

dt
= Kgas(T)[Oion

ads]
a[R]b (17)

where, n is the electron density or electron concentration in

the charge accumulation layer under the test gas (e.g. H2)

atmosphere, b is a charge parameter which might have value

in the range of 0.5 to 2 for hydrogen and 0.08 to 2 for

ethanol respectively. Similarly, a is a charge parameter which

might have value in the range of 0.5 to 1 for oxygen ions.

Kgas(T) is the reaction rate constant or reaction rate coefficient

described as

Kgas(T) = A exp(−Ea/kBT) (18)

where Ea is the activation energy of reaction, kB is the

Boltzmann constant, T is absolute temperature and A is

proportionality constant. Integrating Eq. (17) leads to the

solution as

n = Kgas(T)[Oion
ads]

a[R]bt + no (19)

where no is the saturated electron concentration of sensor

at an operating temperature in the air atmosphere. In the

saturated ethanol, i.e., at equilibrium under ethanol and air

atmosphere, carrier concentration n and no could be considered

as a constant with time.

n = Kgas(T)[Oion
ads]

a[R]bτ + no (20)

Where τ is a time constant. At a constant operating temper-

ature the resistivity of a semiconductor is defined as ρ = α / n.

Where α is a proportionality constant with ‘+’ sign for n-type

and ‘−’ sign for p-type semiconductor, and can be substituted

in equation (20) as

1

Rg
= (Kgas(T)[Oion

ads]
a[R]bτ )/α +

1

Ra
(21)

Assuming the concentration of adsorbed test gas ([R]b) on

the sensor surface is linearly proportional to the gas concen-

tration in gas chamber (Cb
g), at constant operating temperature

the sensor response relation can be obtained in a compact form

Rs = MCb
g (22)

where Rs is response of the sensor and it could be defined as

(Rgas-Rair)/Rair and M is (Kgas(T)[Oion
ads]

aτ )Rair / α, a constant

at constant operating temperature.



Fig. 6. Response vs. test gas concentration of 25 nm composite thin film at
the operating temperature of 400 °C; gas flow rate: 100 cc/min.

TABLE VI

COMPARISON OF OUR EXPERIMENTAL DATA WITH AVAILABLE

LITERATURE VALUES OF CuO BASED SENSING MATERIALS

Figure 6 shows the variation of response of the 25 nm thin

film sensor with gas concentration at the operating temperature

of 400 °C. Gas sensing response is following the power

law equation (eq. 22) for both the gases in the range of

10 ppm to 500 ppm. Response toward ethanol is slightly higher

than that of hydrogen for similar concentration, i.e., this sensor

is more sensitive toward ethanol than hydrogen. The obtained

value of b is 0.65 for ethanol and 0.88 for hydrogen. This value

of b toward ethanol is quite similar with the reported values,

0.677 and 0.54 for ZnO nano rods and nano structured sensing

materials respectively [39], [40]. For hydrogen, the value of b

was reported as 0.53 for ZnO thin films [41]. The value of b

of these sensors was not as close to 0.5. Such deviation might

occur due to the fact that the surface depletion or accumulation

layer has some effect on the oxygen adsorption species at

metal oxide surface when the grain diameter is close to double

of that layer thickness (2Ld) [41]. At the operating temperature

of 400 °C, both O− and O2− ion species formation are possible

on metal oxide surface [38]; quantitative comparison of these

ions at this operating temperature is not available in literature.

So, the value of b power law exponent for hydrogen can be in

the range of 0.5 to 1 at the operating temperature of 400 °C.

The value 0.88 for hydrogen in our case gives an indication

of higher concentration of O− ion than O2− on sensor surface

at the operating temperature of 400 °C. Similarly, for ethanol

the value can be in the range of 0.08 to 1 at the operating

temperature of 400 °C, but the value 0.65 indicates the

reduction of ethanol through the formation of acetaldehyde

on the sensor surface.

The ethanol and H2 sensing properties of various CuO

nano structures in the literature are summarized in Table VI.

Few of them reported higher response in comparison to the

current work but at the cost of very high gas concentra-

tion [3], [14], [15]. And short response time was observed

in this present study among the values reported recently in

the literature of CuO sensors.

V. CONCLUSION

The self-organized CuO–CuFe2O4 thin films showed p-type

semiconductor behaviour with increase in electrical resistance

upon exposure to hydrogen or ethanol gas. Good fitting of

response or recovery curve with single site gas adsorption

model indicates that the reaction had occurred only on the

surface of thin films. The developing process of this porous

microstructure of top CuO layer is interesting as this kind

of sensors have shown improved sensing properties toward

reducing gases (e.g. ethanol and hydrogen) compared to the

CuO thin film sensors fabricated by other techniques already

reported. The best sensing performance was observed for

the 25 nm thin film at an operating temperature of 400 °C

with a response of 79% toward 500 ppm of H2 and the

response and recovery times obtained at this temperature are

∼60 s and ∼220 s, respectively. This 25 nm thin film sample

also exhibited 128% response toward 500 ppm of ethanol

with 90 seconds response time at the operating tempera-

ture of 400 °C. Also, we have demonstrated the variation

of response of the sensors for a wide range of test-gas

concentration. Due to these promising results, we believe that

an optimised fabrication of this composite material could be

a cheap potential gas sensing candidate only for local target

oriented applications where the presence of other interfering

gases is in negligible amount (e.g. in breathalyzer, water elec-

trolysis plant). For example, the typical composition of exhaled

air is 5.0–6.3% water vapour, 74.4% nitrogen, 13.6–16.0%

oxygen, 4.0–5.3% carbon dioxide, <0.1% microbes or volatile

organic compounds [43], [44]. Presence of humidity plays

a significant role on sensing performance of metal oxide

semiconductors at low operating temperatures (<250 °C) by

the formation of HO− at the surface of the semiconductor.

Wang et al. [45] reported decrease in response of CuO



Fig. 7. A schematic illustration of the proposed sensing device using
CuO-CuFe2O4 composite thin film.

sensor toward reducing gas (e.g. ethanol) with increase in

relative humidity at the operating temperature of 220 °C.

Morimoto et al. [46] showed that the most of the water content

desorbed from metal oxides (e.g TiO2, ZnO, α-Fe2O3) surface

at the operating temperature of 400 °C. So, the effect of

moisture on this sensor performance can be negligible as it will

be operated at 450 °C. In our earlier studies, it was observed

that the response of the same sample toward CO2 was very

slow with response time of ∼9.5 hour and maximum response

of ∼50% was observed at 250 °C which reduced below 10%

at higher operating temperature (400 °C) [47]. So, fabrication

of a practical breath-alcohol tester can be possible for its fast

response time (1.5 min) and recovery time (7.5 min) with high

response toward ethanol at 450 °C. Similarly, it can be used

as cheap alarm for hydrogen-leakage, e.g., at water electrol-

ysis plant (where the presence of alcohol or volatile organic

compound is negligible or rare). A schematic illustration of

the proposed sensing device is given in the figure 7. This

proposed sensor should be operated at normal air atmosphere

(∼20% O2), where oxygen will not vary to that much extent

in this environment. Though, in our future work, we plan

to investigate the effect of oxygen concentration at ambient

atmosphere on the sensing performance of this CuO–CuFe2O4

composite sensing material.
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