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ABSTRACT

A new model which accounts for energy balance while describing the evolution of a thin viscous, Newtonian film down an incline at high
Reynolds numbers and moderate Weber numbers has been derived. With a goal to improve the predictions by the model in inertia domi-
nated regimes, the study employs the Energy Integral Method with ellipse profile EIM(E) as a weight function and is motivated by the success
of EIM in effectively and accurately predicting the squeeze film force in squeeze flow problems and in predicting the inertial effects on the
performance of squeeze film dampers [Y. Han and R. J. Rogers, “Squeeze film force modeling for large amplitude motion using an elliptical
velocity profile,” J. Tribol. 118(3), 687–697 (1996)]. The focus in the present study is to assess the performance of the model in predict-
ing the instability threshold, the model successfully predicts the linear instability threshold accurately, and it agrees well with the classical
result [T. Benjamin, “Wave formation in laminar flow down an inclined plane,” J. Fluid Mech. 2, 554–573 (1957)] and the experiments by
Liu et al. [“Measurements of the primary instabilities of film flows,” J. Fluid Mech. 250, 69–101 (1993)]. The choice of the ellipse profile allows
us to have a free parameter that is related to the eccentricity of the ellipse, which helps in refining the velocity profile, and the results indi-
cate that as this parameter is increased, there is a significant improvement in the inertia dominated regimes. Furthermore, the full numerical
solutions to the coupled nonlinear evolution equations are computed through approximations using the finite element method. Based on a
measure {used by Tiwari and Davis [“Nonmodal and nonlinear dynamics of a volatile liquid film flowing over a locally heated surface,” Phys.
Fluids 21, 102101 (2009)]} of the temporal growth rate of perturbations, a comparison of the slope of the nonlinear growth rate with the
linear growth rate is obtained and the results show an excellent agreement. This confirms that the present model’s performance is as good as
the other existing models, weighted residual integral boundary layer (WRIBL) by Ruyer-Quil and Manneville [“Improved modeling of flows
down inclined planes,” Eur. Phys. J: B 15, 357–369 (2000)] and energy integral method with parabolic profile [EIM(P)] by Usha and Uma
[“Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using
energy integral method,” Phys. Fluids 16, 2679–2696 (2004)]. Furthermore, for any fixed inclination θ of the substrate, 0 < θ < π/2, there is
no significant difference between the EIM(E) and EIM(P) results for weaker inertial effects, but when the inertial effects become stronger, the
EIM(E) results for energy contribution from inertial terms to the perturbation at any streamwise location is enhanced. More detailed inves-
tigation on the model’s performance due to this enhancement in energy contribution and the assessment of the model as compared to the
other existing theoretical models, experimental observations, and numerical simulations, in the inertia dominated regimes, will be reported
in a future study.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5127815., s

I. INTRODUCTION

A wide range of dynamic phenomena is displayed by flow of
liquid films down an inclined plane in the presence of a free sur-
face. Many simplified model equations have been developed start-
ing from the full Navier-Stokes equations by using a long-wave

approximation and by assuming various order-of-magnitude of the
dimensionless parameters (Reynolds numbers and Weber num-
bers). Thesemodels have been developed with a goal to capturemain
physical features of the flow. The fascinating dynamics and features
of gravity driven thin film flow have been captured and understood
using developed models for a wide range of flow systems.1–5
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Following Kapitza and Kapitza,6 who performed experimental
as well as theoretical studies, Benjamin7 has obtained the instabil-
ity threshold using a power series expansion of the Orr-Sommerfeld
equations. Benjamin7 and later Yih8 have shown that the Nusselt flat
film stationary solution with a parabolic velocity profile is unsta-
ble to long waves, if the Reynolds number (Rec) exceeds a critical
value, that is, Rec ≙ 5

6
cot θ, where θ is the inclination of the inclined

substrate with the horizontal.
Few numerical solutions of the full Navier-Stokes equations

have been considered, and they are restricted to small Reynolds
numbers and two-dimensions. Although this is difficult and involves
high computational cost due to the presence of a free surface, there
are studies9–14 which have performed numerical scrutiny of the
governing equations and boundary conditions.

Chang et al.15 and Demekhin et al.16 have performed the ana-
lytical scrutiny of the reduced Navier-Stokes equations having the
same dimensionality obtained by assuming that the streamwise vari-
ations are small as compared to crosswise variations (boundary
layer equations). This has initiated the development of two-equation
models for thickness of the film and flow rate. Shkadov17 was the first
to propose such a two equation model starting from the boundary
layer equations15 [an Integral Boundary Layer (IBL) model].

He has employed the averagingmethod of Kárman-Pohlhausen
with Nusselt solution parabolic velocity as the downstream veloc-
ity and integrated the streamwise momentum equation, and this
has yielded a two-equation model for film thickness and local flow
rate. Although this model has reproduced solitary waves observed
in experiments, it has failed to predict the correct instability thresh-
old; the model equation was not consistent with the Benney equa-
tion, and the parabolic velocity profile did not satisfy the dynamic
boundary condition at the second order.

However, this model is capable of describing the dynamics of
waves in thin film flows but is not consistent with the long-wave
analysis of the Orr-Sommerfeld equations. Note that the correct crit-
ical Reynolds number is recovered by this model for films down
vertical substrates, in the long-wave limit, but for moderate inclina-
tions of the inclined plane, the predicted instability threshold is not
correct. Even if the Nusselt flow is unstable, the self-similar parabolic
profile of the Nusselt flow is employed to derive the depth averaged
Navier-Stokes equations.

After Benney,18 many consistent models in the limit of long-
wave asymptotic approximation have been derived for the film
thickness evolution. Such a first order scalar hyperbolic conservation
equation displays finite time discontinuity near the critical Reynolds
number. Also, there is a blow up of solutions of the Benney type
evolution equation, when linear stability conditions are violated.19–21

However, the Benney equation resembles the Kuramoto-Sivashinsky
equation22,23 in the limit of small-amplitude modulations. Takeshi24

resolved this deficiency by employing a Padé-like regularization
technique; but the model failed to yield accurate wave solutions
away from the critical Reynolds number. The above investiga-
tions with one equation model for film thickness clearly indi-
cate that such a model is inadequate to provide accurate and
complete details of wave development in a thin film down an
incline.

In the subsequent investigations, the focus has been on deriv-
ing (i) models of low dimensionality so as to get a reasonable
computational cost and (ii) models with a desired mathematical

structure so as to employ robust numerical schemes which will
yield reliable results. The models are based on long-wave asymp-
totic expansion as the flow remains close to Nusselt flow in most
cases. They are of lower dimensions since the depth average of the
Navier-Stokes equations is performed. The computations become
faster and easier due to inclusion of the boundary conditions in the
model.

Motivated by the experimental observations that solitary waves
in thin film flows display a deviation from the parabolic profile,25,26

Nguyen and Balakotaiah27 have employed a general parabolic pro-
file and have obtained a three-equation model for film thickness,
flow rate, and wall shear stress, which has predicted physically
meaningful results and quantitative predictions of large amplitude
waves.

Ruyer-Quil and Manneville28 have attributed the failure of
Shkadov’s model to the lack of flexibility of the assumed velocity
profile. Their model, derived using a Galerkin method, is based on
a long-wave expansion of the Navier-Stokes equations and consists
of four evolution equations for the local flow depth, local flow rate,
and two other quantities measuring the departure from the parabolic
velocity profile. The Nusselt solution and three more polynomials
appearing in the Benney equation derivation have been used. A sim-
plified two-equation model [Weighted Residual Integral Boundary
Layer (WRIBL) model] for local flow depth and local flow rate has
been obtained from the above four-equation model, and this is con-
sistent with the Benney equation of the second order and predicts
the instability threshold accurately.

The deficiency in the Benney equation which displayed unphys-
ical solutions that grow indefinitely in time19,29–32 and the failure of
Shkadov’s17 equation to predict the critical condition for instabil-
ity correctly could be overcome by the Weighted Residual Integral
Boundary Layer (WRIBL) model.28,33 Their first and second order
models, for large Kapitza numbers, have predicted the linear insta-
bility threshold accurately. In a wide window of Reynolds num-
bers, their solutions remain bounded. When the Reynolds number
slightly exceeds the critical Reynolds number, then the above model
fails to capture the solitary wave solutions accurately. Following the
success of this model, several investigations involving both con-
fined geometries and free surface flows34,35 have employed WRIBL
and have analyzed and predicted reliable and accurate stability
features.

It is important to note that the results obtained from the
Weighted Residual Integral Boundary Layer (WRIBL) method
extended to three-dimensional flows show a very good agree-
ment with the experimental results.36 Mudunuri and Balakotaiah37

have assumed a self-similar parabolic velocity profile and have
obtained a two-mode model similar to the two-equation model
by Ruyer-Quil and Manneville,28 using a Galerkin projection,
and this describes the dynamics of film down an incline/vertical
substrate for Weber numbers >1. The above studies on low-
dimensional models for thin films are based on a closure assump-
tion for the self-similar parabolic velocity profile in the streamwise
direction.38

Teshukov39 has proposed a method not involving the notion
of a profile for turbulent flows. Motivated by its success in describ-
ing turbulent roll waves and in the study of hydraulic jump,40,41

Richard et al.42 have generalized it to laminar viscous film flows
down an incline with a long-wavelength asymptotic expansion.
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They have derived a three equation model for the film thickness,
average velocity, and entropy related to the variance of the veloc-
ity, which describes the flow of a thin viscous film down an incline.
The structure of the resulting equation is the same as that of Euler
equations governing compressible fluids. The equation includes the
effects of diffusivity and capillarity in addition to relaxation of
source terms. Classical, reliable, and robust numerical schemes have
been employed to solve these equations. The model results and the
experimental observations43,44 agree well.

Amaouche et al.45 have included third order terms in order to
capture the effects of the small Weber number and high Reynolds
numbers and have developed a model for describing the evolu-
tion of waves on a film flow down an incline using WRIBL. They
have attempted to modify or refine the velocity profile through
a free parameter and have performed a linear stability analysis,
and the results are shown to be in good agreement with Orr-
Sommerfeld equations for all Weber and Kapitza numbers. A sub-
stantial improvement in the predictions is observed in the inertia
dominated regimes.

Lee and Mei46 have developed a two-equation Momentum
Integral Model (MIM) for local flow depth and local flow rate,
valid for moderate and high Reynolds numbers, and is based on a
parabolic velocity profile. The model equations captured the Hopf
bifurcation features but failed to predict the correct critical Reynolds
number.

The dynamics and stability of a thin film flowing down an
inclined substrate has been examined by Usha and Uma47 using the
Energy Integral Method (EIM) with parabolic profile as the weight
function. The two equationmodel represents a second order approx-
imation to the Navier-Stokes equations and the boundary conditions
and captures the effects for the large Reynolds number and mod-
erate surface tension. Their study has been motivated by evolution
equations based on EIM, employed by Elkouh48 and Crandall and
Ei-Shafei49 for squeeze film flows and the investigations on the com-
putation of normal force on a squeeze film for large inertial effects
by Han and Rogers50 using EIM. The above studies on squeeze film
flow have revealed that the inclusion of energy approximations has
shown to be more effective in understanding the effects of inertia
on the squeeze-film damper performance. The exact solutions of
squeeze-film damper flows49 and the predictions by EIM agree well
for Reynolds numbers of order one. At the low Reynolds number,
there is a 20% error at the first order approximation, thereby indi-
cating the capability of EIM as compared to the Momentum Integral
Method (MIM) in the prediction of inertial effects on the squeeze-
film damper performance. Elkouh’s48 accurate prediction on pres-
sure distribution by EIM and the available experimental observa-
tions51 agree well. There are also other evidences which suggest the
use of EIM as the predicted results are close to either experimen-
tal observations or numerical simulations.50,52–54 It is important to
observe that the squeeze film force has been accurately predicted by
the EIM for small tomoderate inertial effects and for large amplitude
motion. Note that the simplified two equation model, deduced from
a four equation model,28,33 is identical with the two equation model
for local film depth and flow rate developed by EIM with parabolic
profile by Usha and Uma.47 The EIM model with parabolic veloc-
ity profile by Usha and Uma47 has predicted the instability threshold
correctly in the linear regime (as given in the work of Benjamin7

and Yih8). They have also presented qualitative and quantitative

features of traveling wave solutions by deriving a dynamical sys-
tem by considering the model equations in a stationary frame of
reference.

Abderrahmane and Vatistas55 have pointed out that the sec-
ond order models by Lee and Mei46 and Usha and Uma47 have
not accounted for the tangential component of the dynamic inter-
face condition up to the second order as their choice of the
parabolic velocity profile cancels the shear stress at the free sur-
face. This drawback has been removed in the model developed
by them by incorporating the shear stress at the interface as vari-
able in the velocity profile. Their new model thus is a refinement
of Usha and Uma’s model and is consistent to the third order of
accuracy.

This approach has been effectively employed in subsequent
investigations by Ruyer-Quil et al.56 in their two-equation model
that describes film flow on a vertical cylinder to the first and
second orders of approximation to the governing Navier-Stokes
equations. They have considered a linear stability analysis of the
model equations and have investigated the traveling wave solu-
tions. Novbari and Oron,57,58 in their study on nonlinear dynam-
ics of an axisymmetric thin film flowing down a vertical cylin-
der, have derived their model equation based on EIM proposed
by Usha and Uma,47 approximating the Navier-Stokes equations to
the first order of a small aspect ratio parameter. Their study has
demonstrated the success of EIM in predicting results which are
“sufficiently good to fit several experimental observations better than
other theories of higher order of approximation existing in the liter-
ature in terms of wave shapes and amplitudes.” Furthermore, they
have shown that EIM admits both traveling wave and nonstationary
wave flows.

Luchini and Charru59 have noted that the kinetic-energy equa-
tion derived by Usha and Uma47 gives the right stability threshold of
long waves in a falling film. Furthermore, they have pointed out its
generality as a consistent nonlinear formulation and have presented
the method of consistent section-averaged equations using the
kinetic-energy balance appropriate to the boundary layer approxi-
mation in their investigation on shallow-water flow over a perturbed
bottom.

Using EIM, Sadiq60 has investigated thin film flow over a topog-
raphy having sinusoidally varying longitudinal furrows. Sadiq60

has examined the model equations numerically by posing it as
an Initial Value Problem (IVP) on a periodic domain for a con-
figuration resembling a vertically shifted topography with a shift
value equal to the amplitude value. The film flow is stabilized as
compared to a topography which does not undergo any vertical
shift.

Han and Rogers50 have demonstrated the advantage of employ-
ing EIM with ellipse velocity profile over EIM either with parabolic
profile/MIM or with parabolic/ellipse profile, while exploring
squeeze film force modeling for large amplitude motion. This
study clearly shows the efficiency of the EIM with ellipse pro-
file to predict the effect of inertia on the squeeze film damper’s
performance.

Motivated by the above study and by the curiosity to develop
more and more accurate models capable of providing quantitative
information about the fully developed regime far away from the
inlet where nonlinearities are expected to dominate the wave pro-
files, in this article, a new two-equation model for evolutions of
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local flow depth and local flow rate is developed. The focus in this
study is only on the development of a new model and examining
how correctly it predicts the instability threshold. Furthermore, in
order to highlight the model’s capability to capture the features in
the nonlinear regime, the full numerical solutions to the coupled
nonlinear evolution equations are obtained through computations
based on the finite element method (FEM). A comparison of the
slope of the nonlinear growth rate with the linear growth rate based
on a measure61 of temporal growth rate of perturbations reveals
an excellent agreement. This confirms how accurately the present
EIM(E) model involving a free parameter, related to the eccentric-
ity of the ellipse profile chosen as the weight function, also pre-
dicts the solutions as good as the other existing models such as
those by Ruyer-Quil and Manneville,33 Amaouche et al.,45 and Usha
and Uma.47

The present study presents a perspective of the developed
model and a detailed rigorous study on the model’s capability to
capture the other features such as traveling-wave and solitary-wave
solutions in the strongly nonlinear regime, and the assessment of the
model’s performance as compared to the other theoretical models
through experimental observations and numerical simulations will
be considered in a future study.

II. MATHEMATICAL FORMULATION

A viscous, incompressible, Newtonian thin film fluid flowing
down an incline making an angle θ (0 < θ < π

2
) with the horizon-

tal under the action of gravity and surface tension σ0 is considered.
A Cartesian coordinate system with the x-axis along the inclined
plane and the y-axis normal to it is the reference frame for the above
two-dimensional motion [Fig. 1(a)]. The free-surface is located at
y = η(x, t), and the governing equations are the continuity and
Navier-Stokes equation, given by

ρ∥v⃗t + (v⃗ ⋅∇)v⃗∥ ≙ −∇p + μ∇2
v⃗ + g, (1)

∇ ⋅ v⃗ ≙ 0, (2)

in a domain Ω(t) ≙ {(x, y)∣x ∈ R, 0 < y < η(x, t)} occupied at
time t by the fluid, where v⃗ ≙ (u, v) is the velocity vector, ρ denotes

FIG. 1. (a) Schematic diagram of a thin viscous film flow down an incline and (b)
the ellipse profiles [Eq. (19), 0 < y < 1] for different values of the free parameter A
with corresponding values of eccentricity (e listed in Table I); the insets show the
zoom-in view of the velocity profiles at different y locations.

density, p is the pressure, and μ is the dynamic viscosity of the fluid.
The conditions at the boundaries are

v⃗ ≙ 0⃗ at y ≙ 0, (3)

ht + uhx ≙ v at y ≙ η(x, t), (4)

n̂ ⋅ T⃗ ⋅ n̂ ≙ −σ0(∇⃗ ⋅ n̂) at y ≙ η(x, t), (5)

t̂ ⋅ T⃗ ⋅ n̂ ≙ 0 at y ≙ η(x, t), (6)

which correspond to the no-slip condition at the bottom, the
kinematic free surface condition, and the balance of normal and
shear stresses at the free surface. Here, T⃗ is the stress tensor and

n̂ ≙
(−ηx, 1)√

1 + η2x
is the unit outward normal vector to the free bound-

ary. The dimensionless form of the above equations and the bound-
ary conditions (1)–(6) are obtained by choosing scales based on
the time dependent Nusselt solution for the system (1)–(6) which
corresponds to solution of the system (1)–(6) for uniform flow
given by

u0 ≙
g sin θh20

2ν
[2y
h0
− y2

h20
], v ≙ 0,

where h0 is the depth of the primary flow. The corresponding depth
averaged velocity is

ū0 ≙
1

h0
∫ h0

0
u0 dy ≙

g sin θh20
3ν

, (7)

and the flow rate is Q̄0 ≙ ū0h0. The dimensionless variables are
defined by

x
∗ ≙

x

L
, y
∗ ≙

y

h0
, H ≙

η

h0
, u
∗ ≙

u

ū0
, v
∗ ≙

Lv

h0ū0
,

t
∗ ≙

tū0

L
, p
∗ ≙

p − pa
ρū20

, ϵ ≙
h0

L
,

(8)

where L is the length scale in the direction of flow and it is of the
order of the wave length. This study is pursued under the assump-
tion that the ratio of layer depth to the wave length is very small. The
corresponding dimensionless equations (omitting ∗) are

ux + vy ≙ 0, (9)

ut + uux + vuy ≙ −px + 3

ϵRe
+

ϵ

Re
uxx +

1

ϵRe
uyy, (10)

ϵ2∥vt + uvx + vvy∥ ≙ −py − 3 cot θ

Re
+

ϵ3

Re
vxx +

ϵ

Re
vyy, (11)

u ≙ 0 , v ≙ 0 at y ≙ 0, (12)

p +
2ϵ

Re
[uyHx + ϵ2vxHx − ϵ2uxH2

x − vy][1 + ϵ2H2
x]−1

+ ϵ2WeHxx[1 + ϵ2H2
x]− 3

2 ≙ 0 at y ≙ H, (13)
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(uy + ϵ2vx)[1 − ϵ2H2
x] + 2ϵ2∥vy − ux∥Hx ≙ 0 at y ≙ H,

(14)

v ≙ Ht + uHx at y ≙ H, (15)

where Re ≙
ū0h0

ν
≙

g sin θh30
3ν2

is the Reynolds number and

We ≙
σ0

ρū20h0
is the Weber number.

Our goal is to derive a model that describes the temporal and
spatial evolution of the local flow rate Q and local flow depthH(x, t)
from equations (9)–(15). This is achieved by using the energy inte-
gral method47 with an appropriate ellipse type profile which is
derived below.

A. Ellipse profile

An ellipse type velocity profile (as the weight function) is
obtained by taking its equation as

u
2(x, y, t) + B1(x, t)y2 + C1(x, t)u +D1(x, t)y + E1(x, t) ≙ 0 (16)

and satisfying the no-slip condition

u ≙ 0 at y ≙ 0, (17)

∂u

∂y
≙ 0 at y ≙ H. (18)

Equation (17) implies that E1(x, t) ≡ 0 and (18) gives D1(x, t)
= −2HB1(t). This reduces (16) to

(u + C1

2
)2

a21
+
(y −H)2

b21
≙ 1, (19)

where

C1 ≙
2a1

b1

√
b21 −H2, b1 ≙

AH

2
,

where a1 and b1 are semimajor and semiminor axes of the ellipse
profile and are related to B1 and C1 by

a
2
1 ≙

C2
1

4
+ B1H

2
, B1 ≙

a21
b21

,

and A is the free parameter that allows us to refine the ellipse profile.
Simplification of (19) yields the ellipse type velocity profile as

u(x, y, t) ≙ a1

AH
[√A2H2 − 4(y −H)2 −√A2H2 − 4H2]. (20)

The associated flow rate Q(x, t) ≙ ∫H0 u(x, y, t)dy is obtained as

Q(x, t) ≙ a1[AH
4

sin
−1( 2

A
) − H

2A

√
A2 − 4]. (21)

Now, a1 is expressed in terms of Q, H, and A as

a1 ≙
Q

AH
4
sin−1( 2

A
) − H

2A

√
A2 − 4 . (22)

This in turn gives u as

u(x, y, t) ≙ KpQ

H2
[√A2H2 − 4(y −H)2 − BH], (23)

where

Kp ≙
1

A2

4
sin−1( 2

A
) − 1

2

√
A2 − 4 ,B ≙

√
A2 − 4. (24)

The free parameter A serves to refine the velocity profile and thus
acts on the flexibility of the velocity profile which is derived by sat-
isfying the boundary conditions for flow of a flat smooth uniform
Nusselt film down an inclined plane. The dimensionless velocity
profile is

u ≙ Kp[√A2 − 4(y − 1)2 − KpB], (25)

i.e
(u + KpB)2

K2
pA

2
+
(y − 1)2
A2/4 ≙ 1, (26)

where the major axis is KpA and the minor axis is A/2.
Therefore,

(A
2
)2 ≙ K

2
pA

2(1 − e2), (27)

and eccentricity (e) of the ellipse is

e
2 ≙ 1 − [A2 sin−1( 2

A
) − 2√A2 − 4]2
64

. (28)

As A increases, eccentricity (e) increases and approaches the
value 1 (Table I). Thus, the parameter A modifies the ellipse pro-
file [Fig. 1(b)]. Figure 1(b) shows the ellipse profiles [used as weight
functions; Eq. (19), 0 < y < 1] for different values of the free param-
eter A, which is related to the eccentricity of the ellipse profile.
The velocity exhibits a nonmonotonic trend as the parameter A
increases. The velocity increases with an increase in A up to A = 40,
but beyond that there is a decrease in the velocity. The velocity for
A = 40 is larger than that for A = 20 or A = 60. It is for this reason
that in the computations that follow, the A value has been fixed as
40. A more detailed analysis in future will focus on what is the opti-
mal value of this parameter A as the surface tension effects become
larger.

TABLE I. The eccentricity (e) of the ellipse as parameter A increases.

A Kp e

20 14.9549 0.999 441
30 22.4699 0.999 752
40 29.9775 0.999 861
60 44.9850 0.999 938
80 59.9887 0.999 965
100 74.9910 0.999 978
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The continuity Eq. (9) then gives the transverse velocity
v(x, y, t) as

v ≙ −Kp

⎡⎢⎢⎢⎢⎣
QHx

H3

⎧⎪⎪⎨⎪⎪⎩BHy − y
√
A2H2 − 4(y −H)2⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
−Kp[Qx

H2
{A2H2

4
sin
−1 2(y −H)

AH
+
(y −H)

2

×√A2H2 − 4(y −H)2 + A2H2

4
sin
−1 2

A

+
H2

2

√
A2 − 4 −√A2 − 4Hy}]. (29)

We now employ a Galerkin based formulation with the weight func-
tion as the ellipse type velocity profile u(x, y, t) satisfying Nus-
selt film boundary conditions and derive the two-equation model
for local flow rate Q(x, t) ≙ ∫H0 u(x, y, t)dy and local flow depth
H(x, t) by requiring that u, v, p also satisfy the weighted depth
averaged system (10) and (11) along with (9) and (12)–(15). As
mentioned in the Introduction, a first-order accurate EIM is devel-
oped based on the confidence of the results obtained using EIM
in other configurations,47,55,57,58 when both ϵRe and We are of
order one.

Now, the depth average of the continuity Eq. (9) along with the
use of the kinematic free surface condition (15) gives

Ht +Qx ≙ 0. (30)

The first-order accurate y-momentum Eq. (11) yields

p ≙ −3 cot θ
Re
(y −H) + 2ϵ

Re
(A − B)Kp[QHx

H2
− Qx

H
] − ϵ2WeHxx,

(31)

from which px is computed and substituted in (32). The momentum
Eq. (10) along the x-direction is multiplied by the weight function u
and is integrated across the film thickness. This gives

∫ H

0
[u(ut + uux + vuy)dy + upx − 3u

ϵRe
− ϵ

Re
uuxx − 1

ϵRe
uuyy]dy ≙ 0.

(32)

Using the ellipse velocity profile in (32) and performing integration
of each term in (32) gives T1 + T2 + T3 + T4 = 0, where

T1 ≙ ∫ H

0
u(∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
)dy

≙
QQtK

2
p

H
[A2 − 4

3
− A2B

2
sin
−1 2

A
] + Q2HtK

2
p

H2

×[−3
2
A
2
+
8

3
+ AB +

A2B

4
sin
−1 2

A
] + Q2QxK

3
p

2H2

×[{37
16

A
4 − 8A2

+
A3B

2
} sin−1 2

A
+ B − 37

8
A
2
B − A3

+ 4A]
+
Q3HxK

3
p

H3
[{−15

16
A
4
+ 3A

2} sin−1 2

A
+
15

8
A
2
B − B], (33)

T2 ≙ ∫ H

0
u
∂p

∂x
dy ≙

3 cot θ

Re
HxQ − ϵ2WeQHxxx, (34)

T3 ≙ −∫ H

0

3

ϵRe
udy ≙ − 3

ϵRe
Q, (35)

T4 ≙ −∫ H

0

1

ϵRe
u
∂
2u

∂y2
dy ≙ − 2

ϵRe
K

2
p
Q2

H3
[A ln∣A − 2

B
∣ + 2]. (36)

The evolution model for Q and H [EIM(E)] is given by

C1E
Qt

H
+ C2E

QHt

H2
+ C3E

QQx

H2
+ C4E

Q2Hx

H3
+
3Hx cot θ

Re

− ϵ2WeHxxx − 3

ϵRe
+
C5E

ϵRe

Q

H3
≙ 0, (37)

C1E ≙ K2
p[A2 − 4

3
− 1

2
A
2
B sin

−1( 2
A
)],

C2E ≙ K2
p[−3 A2

2
+
8

3
+ AB +

1

4
A
2
B sin

−1( 2
A
)],

C3E ≙
1

2
K

3
p[(37 A4

16
− 8 A2

+
A3B

2
) sin−1( 2

A
)

+(B − 37 A2B

8
− A3

+ 4 A)],
C4E ≙ K3

p[(3 A2 − 15 A4

16
) sin−1( 2

A
) + 15 A2B

8
− B],

C5E ≙ −2K2
p[A ln∣ (A − 2)

B
∣ + 2].

The first four terms in Eq. (37) contribute to the inertial effects
in the developed model; the next two terms describe the pres-
sure and surface tension effects, and the last but one term and the
last term arise due to gravitational acceleration and shear stress
at the wall. Equations (30) and (37) give the new two-equation
model for the spatial and temporal evolutions of Q(x, t) and
H(x, t), and it is based on energy balance with the ellipse type
profile.

The energy integral method (EIM) with parabolic veloc-
ity profile (as weight function) formulated by Usha and Uma47

[EIM(P)] reads as follows, if one takes terms accurate up to the
first order,

6

5

Q
(p)
t

H
− 3HtQ

(p)

5H2
+
81Q(p)Q

(p)
x

35H2
− 54HxQ

(p)2

35H3
− 3

ϵRe

+
1

ϵRe

3Q(p)

H3
+
3 cot θ

Re
Hx − ϵ2WeHxxx ≙ 0, (38)

where Q(p) ≙ ∫H0 U(p) dy, with
U
(p) ≙

3Q(p)

2H
(2y
H
− y2

H2
). (39)
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We observe that the newmodel (37) contains exactly the same terms
but with different coefficients depending on the parameter A. Note
that the constants Kp and B, in Eq. (24), also depend on A.

Following the above computations, the following two equa-
tion model also has been developed for comparison purposes. In
the present study. This is based on the momentum integral method
and employs an ellipse profile (23) as a weight function. The model
equations [MIM(E)] valid up to the fist order are

Ht +Qx ≙ 0, (40)

C1M
Qt

H
+ C3M

QQx

H2
+ C4M

Q2Hx

H3
+
3Hx cot θ

Re
− ϵ2WeHxxx

− 3

ϵRe
+
C5M

ϵRe

Q

H3
≙ 0, (41)

C1M ≙
Kp

4
[A2

sin
−1( 2

A
) − 2B],

C3M ≙ K2
p[2 A2 − 8

3
− A2

B sin
−1( 2

A
)],

C4M ≙ K2
p[−A2

+
4

3
+
A2B

2
sin
−1( 2

A
)],

C5M ≙
4Kp

B
.

Also, Lee and Mei46 have used a parabolic profile (39) as a weight
function and have developed a model based on the Momentum
Integral Method [MIM(P)], and it reads as

Ht +Q
(p)
x ≙ 0, (42)

Q
(p)
t

H
− 3

2

Q(p)Ht

H2
+

9

10

Q(p)Q
(p)
x

H2
− 6

5

Q(p)
2
Hx

H3
+
3Hx cot θ

Re

− ϵ2WeHxxx − 3

ϵRe
+

3

ϵRe

Q(p)

H3
≙ 0. (43)

In what follows, we perform a linear stability analysis of the base
Nusselt flow and obtain the critical condition for instability thresh-
old predicted by the new model (37) and compare the results with
the other models [Eqs. (38), (41), and (43)].

III. LINEAR STABILITY OF THE BASE FLOW

A. Instability threshold predicted by EIM(E)

Corresponding to infinitesimal two-dimensional disturbances
(η̂) of the basic uniform flow for the free surface deflection and local
flow rate given by H ≙ 1 + η̂ and Q ≙ 1 + Q̂, the evolution equations
forQ andH [(30) and (37)] are linearized; Q̂ is then eliminated. This
gives

C1Eη̂tt + (C3E − C2E)η̂xt − C4Eη̂xx − 3 cot θ

Re
η̂xx

+ ϵ2We η̂xxxx +
C5E

ϵRe
(η̂t + 3η̂x) ≙ 0, (44)

with an accuracy up to the first order.

Taking a wavelike disturbance for η̂ as

η̂ ≙ exp{i(x − ct)},
where c = cr + ici is the complex phase velocity, cr is the phase speed,
and ci is the linear growth rate, and substituting in (44), a quadratic
equation in c is obtained and is given by

c
2
+ c(P1E + iQ1E) + (P2E + iQ2E) ≙ 0, (45)

where

P1E + iQ1E ≙
1

C1E
[C2E − C3E +

iC5E

ϵRe
],

P2E + iQ2E ≙
1

C1E
[−3 cot θ

Re
− C4E − ϵ2We − 3iC5E

ϵRe
].

The sign of ci determines whether the primary Nusselt film flow is
stable or unstable. For ci > 0, it is unstable, and for ci < 0, it is stable.
The real and imaginary parts of two distinct solutions of Eq. (45) are
given by

cr ≙
−P1E ±M1

2
and ci ≙

−Q1E ±N1

2
,

whereM1 + iN1 ≙
√(P2

1E −Q2
1E − 4P2E) + i(2P1EQ1E − 4Q2E). Writ-

ing P1E, Q1E, P2E, Q2E in terms of C1E, C2E, C3E, C4E, and C5E, we
have

P1E ≙
C2E − C3E

C1E
, Q1E ≙

C5E

C1E ϵRe
,

P2E ≙
1

C1E
[−3 cot θ

Re
− C4E − ϵ2We], Q2E ≙ −3 C5E

C1E

1

ϵRe
.

For ci = 0, the flow is neutrally stable and this yields

Q
2
2E − P1EQ1EQ2E + P2EQ1E

2 ≙ 0,

which simplifies to

cot θ

Re
≙ −C4E

3
+ 3C1E + (C2E − C3E) − ϵ2We

3
.

This can be rewritten in terms of the free parameter A as

cot θ

Re
≙ K2

p

⎡⎢⎢⎢⎢⎣sin
−1( 2

A
)⎧⎪⎪⎨⎪⎪⎩ −

5

4
A
2
B

⎫⎪⎪⎬⎪⎪⎭ −
4

3
+
3

2
A
2
+ AB

⎤⎥⎥⎥⎥⎦ −
ϵ2

3
We

− K3
p

6

⎡⎢⎢⎢⎢⎣sin
−1( 2

A
)⎧⎪⎪⎨⎪⎪⎩

81

16
A
4 − 18A2

+
3A3B

2

⎫⎪⎪⎬⎪⎪⎭
+

⎧⎪⎪⎨⎪⎪⎩ −
81

8
A
2
B + B − 3A3

+ 12A

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦,

which gives the instability threshold predicted by EIM with ellipse
type profile as the weight function.
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FIG. 2. The instability threshold
cot θ

Re
predicted by the two-equation model based

on EIM(E) [Eq. (37)] and MIM(E) [Eq. (41)] as a function of the free parameter A.

B. Instability threshold predicted by MIM(E)

Proceeding as above, the instability threshold predicted by the
model based on MIM(E) with ellipse profile [MIM(E)] as the weight
function [Eq. (41)] is obtained and is given by

cot(θ)
Re

≙ K2
p[−5 A2

3
+
20

9
+
5

6
A
2
B sin

−1( 2
A
)]

+Kp[3
4
A
2
sin
−1( 2

A
) − 3

2
B] − ϵ2We

3
. (46)

In Subsections III C and III D, we present the instability
threshold based on EIM(P) [Eq. (38)]47 and MIM(P) [Eq. (43)]46

for the sake of completeness, for the corresponding first order
model.

C. Instability threshold based on EIM(P)

cot θ

Re
≙
6

5
. (47)

D. Instability threshold based on MIM(P)

cot θ

Re
≙ 1. (48)

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the instability threshold
cot θ

Re
as a func-

tion of the parameter A. We observe that
cot θ

Re
approaches the

value 1.2 predicted by the other models [EIM(P),43 WRIBL33],
thereby demonstrating its capability of predicting the correct
threshold for instability for a thin film flow down an incline.
The inertial coefficients Q/H3, Q2Hx/H

3, QQx/H
2 in the models

MIM(E) [Eq. (41), present study], MIM(P) [Eq. (43)],46 EIM(P)
[Eq. (38)]47 are compared with the coefficients of the same terms
in EIM(E) [Eq. (37), present study] and are presented in Table II for
A = 20, 30, and 40. We observe that as A increases, the improve-
ment is significant in the inertia dominated regime as is evident by
the result in Table II. In addition, the corresponding coefficients
in the second order model developed by Ruyer-Quil and Man-
neville33,67 and Scheid et al.68,69 are computed, and it is observed
that they match well with the corresponding coefficients in EIM(P)
[Eq. (38)].47 It is also observed that all the inertial coefficients given
by EIM(E) lie between those predicted by either MIM(E) or MIM(P)
and EIM(P) or WRIBL. This suggests that the present model’s
[Eq. (37) EIM(E)] predictions in the nonlinear regime (that is, iner-
tia dominated regions) would be as close to reality as the other
three models.

In order to facilitate the comparison of our results with the
existing models, computations are performed with a wavelike dis-
turbance for η̂ as η̂ ≙ exp∥i(kx − ct)∥, and the phase speed,
linear growth rate, and the critical condition on threshold for
instability are obtained as functions of wave number k. Figure 3
displays neutral stability curves of the EIM(E) model for differ-
ent values of the parameter A and EIM(P),47 in the wave number-
Weber number regime, for a vertically falling film. The neu-
tral curve for A = 40 is bounded between that for A = 30 and
the EIM(P) model.

TABLE II. Comparison of coefficients in the evolution equations [Eqs. (37), (38), (41), and (43)] from different models. Note
that the superscript (p) is suppressed in the coefficients appearing in MIM(P) [Eq. (43)] and EIM(P) [Eq. (38)]. The coefficients
of the terms in the table are evaluated at A = 20, 30, and 40 for MIM(E) [Eq. (41)] and EIM(E) [Eq. (37)].

Coefficient of terms in the evolution equation

QQx

H2

Q2Hx

H3

Q

H3

MIM(E) A = 20 Eq. (41) 2.399 311 −1.199 655 3.006 047
MIM(E) A = 30 Eq. (41) 2.399 695 −1.199 847 3.002 676
MIM(E) A = 40 Eq. (41) 2.399 828 1.199 914 3.001 503
MIM(P) Eq. (43) 2.4 1.2 3
EIM(E) A = 20 Eq. (37) 1.188 865 −1.541 824 3.000 005
EIM(E) A = 30 Eq. (37) 1.189 099 −1.542 399 3.000 001
EIM(E) A = 40 Eq. (37) 2.428 388 1.285 592 2.5
EIM(P) or WRIBL Eq. (38) 2.428 571 1.285 714 2.5
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FIG. 3. Neutral stability curves for a vertically falling film for different values of
the parameter A in the EIM(E) model and the EIM(P) model. The inset shows the
zoom-in view of results near 1/(ϵ2We) = 9.

Comparison between wave speeds from the experimental work
of Jones and Whitaker,62 Stainthrop and Allen,63 Strobel and
Whitaker64 and from EIM(P) and present EIM(E) models is shown
in Fig. 4(a) (A = 40) and Fig. 4(b) (A = 20, 30, 40) for vertically falling

FIG. 4. The nondimensional phase speed of the perturbation down a vertically
falling water film, as a function of the Reynolds number (Re). (a) and (b) com-
parison of the present results [EIM(E); solid lines] with the experimental results

by Jones and Whitaker62 (◽), Stainthrop and Allen63 (◇), Strobel and Whitaker64

(△), and EIM(P) (dashed curve), the zoom-in view in (b) shows that there is no
significant difference between the phase speed values for A = 40 and A = 60.
(c) and (d) comparison of the model EIM(E) with A = 40 and EIM(P) results with

approximate solutions of the Orr-Sommerfeld equations of Krantz and Goren65

and direct numerical solutions of Orr-Sommerfeld equations by Pierson and

Whitaker.66

FIG. 5. Dimensionless spatial growth rate of linear waves as a function of the
wavenumber, for glycerine-water films with θ = 4.6○, Re = 15.33, and We = 12.13.
The solid line corresponds to the present model [EIM(E)] predictions for A = 40,
and the dashed and dashed-dotted lines correspond to the EIM(P) model (Usha

and Uma47) and the WRIBL model (Ruyer-Quil and Manneville67). The ◽ symbol

represents experimental observations by Liu et al.70.

water films for Re ≤ 100. The results reveal that both EIM(P) and the
present EIM(E) models follow the trend predicted by experimental
work62–64 and that the values for EIM(E) are closer to the exper-
imental predictions for moderate Reynolds numbers. The above
conclusion is also confirmed by the approximate solutions from
the momentum integral form of the Orr-Sommerfeld equation by
Krantz and Goren65 [Fig. 4(c)] and the direct numerical solutions of
the Orr-Sommerfeld equation by Pierson andWhitaker66 [Fig. 4(d)].
The close agreement of the EIM(E) model results with experimen-
tal work clearly supports the validity of the linearized theory in the
parameter regime Re ≈ O(1/ϵ).

The dimensionless growth rate predicted by the EIM(E) model
along with those of EIM(P) (Usha and Uma47) and the WRIBL
model (Ruyer-Quil and Manneville67) is presented in Fig. 5 when θ
= 4.6○, Re = 15.33, andWe = 12.13. Note that growth rate values are
rescaled to account for the scales employed in the work of Liu et al.70

The present EIM(E)model withA = 40 performs as good as the other
models such as EIM(P) and WRIBL and follows the trend observed
in the experimental study by Liu et al.70 for flow of glycerine-water
film down an inclined plane for small wave numbers. For each wave
number k in a window of wavenumbers considered, EIM(E) pre-
dictions are bounded between EIM(P) (Usha and Uma47 or Sadiq60

for the planar surface) and the WRIBL model (Ruyer-Quil and
Manneville67). The comparison demonstrates that the model equa-
tion [EIM(E)] is valid for very long wavelengths. Furthermore, the
results confirm the validity of the approximations incorporated in
the linear stability theory.

V. NONLINEAR EVOLUTION OF THE FREE SURFACE

From the results in Sec. IV, we observed the present EIM(E)
model with ellipse velocity profile as the weight function gives
satisfactory results for the threshold for instability and compares
well with the characteristics of the waves such as the growth rate
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FIG. 6. (a) A measure of the temporal growth rate of per-
turbations is plotted as time (t) varies using ξ = ln[∥H(x, t)
− 1∥/ξ0], where ∥⋅∥ is the L2-norm defined over the compu-
tational domain and ξ0 = ∥H(x, t = 0) − 1∥ is the magnitude
of the perturbation given to the primary flow. (b) Compar-
ison of the slope of the nonlinear growth rate with the lin-
ear growth (linear fit; black squares) for different values of
cot(θ)

Re
with A = 40. The linear stability (Table III) seems to

predict the growth accurately at the initial time.

TABLE III. The comparison of the growth rate from the two models using ellipse and parabolic profiles. Three different
parameter values for A are chosen. The entries within bracket shows the linear growth rate recovered from the nonlinear
evolution of the perturbation.

cot(θ)
Re

EIM(P) (ci) EIM(E) A = 20 EIM(E) A = 40 EIM(E) A = 60

0.1 0.442 23 0.442 41 (0.426) 0.442 27 (0.432) 0.442 249 (0.426)
0.5 0.264 88 0.265 04 (0.247) 0.264 92 (0.268) 0.264 900 (0.246)
0.9 0.105 21 0.105 35 (0.091) 0.105 24 (0.105) 0.105 228 (0.091)
1.1 0.033 616 0.033 737 (0.023) 0.033 646 (0.023) 0.033 630 (0.023)
1.2 −0.000 000 0.000 113 (−0.011) 0.000 028 (−0.000) 0.000 113 (−0.010)
1.5 −0.092 19 −0.092 10 (−0.115) −0.092 17 (−0.115) −0.092 179 (−0.115)

and phase speed predicted by laboratory experiments and numeri-
cal solutions of the Orr-Sommerfeld system. In order to assess the
validity of our model in the nonlinear regime, in this section, we
try to understand the existence and properties of the nonlinear two-
dimensional waves that the model generates beyond threshold. This
is achieved by obtaining the full numerical solutions to the coupled
nonlinear evolution equations in a computation domain of length
2π with uniform base state of unit thickness.

The computations are performed with 1000 mesh-points and
with finer mesh at the periodic boundaries. The growth of an initial
sinusoidal perturbation to the base state (H = 1) is studied by using
the finite element method (FEM) to numerically approximate the
actual solutions of the coupled nonlinear PDEs through COMSOL
5.1. The growth of the perturbations is obtained using ξ = ln[∥H(x, t)− 1∥]/ξ0, here ∥⋅∥ is the L2-norm defined over the computational
domain and ξ0 = ∥H(x, t = 0) − 1∥ is the magnitude of the pertur-
bation given to the primary flow. An absolute tolerance of 10−7 is
defined to ensure the accuracy of the solutions to the time depen-
dent evolution equations. A periodic type boundary condition is
specified at the edges of the domain to maintain the continuation
in the phases of the waves propagating outside and entering inside
the computational domain.

Figure 6(a) presents the nonlinear growth rate for different val-

ues of cot θ
Re

. The comparison of the slope of the nonlinear growth
rate with the linear growth rate (linear fit; black squares), using
ξ = ln[∥H(x, t) − 1∥/ξ0] we infer from Table III and Fig. 6(b) that
linear stability predicts the growth accurately at the initial time.
The results reveal that the growth rate as predicted by nonlinear
simulation and linear stability theory agrees very well.

There is a natural curiosity to understand the performance of
the EIM(E)model as compared to the EIM(P)model formoderate to
high Reynolds numbers. Note that both the models give satisfactory
results for instability threshold. The basic difference in the models
is that while a parabolic profile is employed as a weight function
in EIM(P), EIM(E) considers an ellipse profile as a weight func-
tion and there is a free parameter A related to eccentricity in this
model. With this in view, the energy contributions from the iner-
tial terms [T1 in Eq. (33), present study] in the EIM(E) model and
[t1 in Eq. (26) in the article by Usha and Uma47] in EIM(P) are
plotted as a function of the streamwise coordinate (x) in Figs. 7(a)

and 7(b) for two different values of cot θ
Re

. It is interesting to note that

FIG. 7. The energy contribution from the inertial terms in EIM with parabolic (blue

circles) and ellipse velocity (black solid line) profiles. (a)
cot(θ)

Re
= 0.1 and (b)

cot(θ)

Re
= 0.5, when We = 1 and A = 40.
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FIG. 8. Film thickness as a function of
the streamwise coordinate x, for We = 1,

Re = 1/ϵ, and ϵ≪ 1. (a) and (c)
cot(θ)

Re

≙ 0.1 and (b) and (d)
cot(θ)

Re
≙ 1.1. The

wave profiles are displayed at nondimen-
sional times with step-size Δt = 0.1 in (a)
and (b) and Δt = 1 in (c) and (d).

contribution to the absolute value of energy from inertial terms in
the EIM(E)model is more than that from the EIM(P)model. For any
inclination θ of the substrate with 0 < θ < π/2, there is no significant
difference between the EIM(E) and EIM(P) results for a lower Re
[Fig. 7(b)], but at a higher Re [Fig. 7(a)], when inertial effects become
stronger, EIM(E) results for energy contribution to the perturbation
at any streamwise location is enhanced. It is of interest to understand
if this enhancement in energy contribution helps in improving the
performance of the EIM(E) model as compared to other models in
the inertia dominated regimes, and this will be pursued in a future
study.

Table III presents the comparison of the growth rate from the
two models with ellipse [EIM(E)] and parabolic [EIM(P)] profiles.
The results are shown for three different values of A (A = 20, 40,
and 60). The terms within brackets in each entry show the linear
growth rate values recovered from the nonlinear evolution of the

FIG. 9. Maximum [Hmax, (a)] and minimum [Hmin, (b)] amplitude of the film thick-
ness as a function of dimensionless time, when We = 1, Re = 1/ϵ, ϵ ≪ 1, and
A = 40.

perturbation. The results also suggest that the choice of A = 40 at
thisWe is justified.

Figure 8 shows the film thickness as the disturbance waves
evolve as a function of the stream-wise coordinate, at different
nondimensional times [Figs. 8(a) and 8(c): cot θ

Re
≙ 0.1 and Figs. 8(b)

and 8(d): cot θ
Re
≙ 1.1], when We = 1 and Re = 1/ϵ, ϵ << 1. As time

elapses, the amplitude of the perturbations decays and the thickness
of the film approaches the base state. As remarked by Liu et al.,70

this instability is of the convective type; as a result, the perturba-
tion leaves the computational domain soon after it is introduced.
The transition to absolute instability is not possible to be captured
in the laboratory frame of reference using long wave70 analysis and
hence remains beyond the scope of this study.

Figure 9 presents the maximum and minimum amplitude of
the film thickness as a function of nondimensional time for differ-
ent values of cot θ

Re
. There is a decrease in the absolute deviation from

the base state as cot θ
Re

increases indicating flow stabilization due to
decay in the imposed perturbation. This behavior was also reflected
in Fig. 8 as time progresses.

VI. CONCLUSION

A new model for describing the dynamics of a thin film down
an incline at high Reynolds numbers and moderate Weber numbers
has been derived using the energy integral method with ellipse pro-
file as a weight function. A free parameter appearing in the ellipse
profile is related to the eccentricity of ellipse, and it allows one to
refine the velocity profile which in turn modifies the performance of
the model in the inertia dominated regimes. The goal is to assess
the model’s capacity in predicting the linear instability threshold,
and the results reveal that the model successfully predicts the insta-
bility threshold accurately and it agrees with earlier theoretical7,8
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and experimental predictions.70 Furthermore, the remark by Luchini
and Charru59 that the kinetic-energy balance equation is a consis-
tent nonlinear formulation gives us confidence in the performance
of the current model EIM(E) in predicting the nonlinear dynamics.
Furthermore, the success of EIM with ellipse profile in predicting
accurately the normal force on a squeeze film for large inertial effects
and for large amplitude motion enhances our expectation about the
performance of the present EIM(E) model, in the inertia dominated
regimes. As a first step toward assessing the validity of the present
EIM(E) model in the nonlinear regime, the numerical solution of
the nonlinear evolution Eq. (37) describing the propagation of non-
linear waves is performed, and the results reveal that the amplitude
of the perturbations decay as time progresses and this is in line with
similar results in the work of Sadiq and Usha.71 The growth rate pre-
dicted by the linear stability theory matches well with that extracted
from the nonlinear evolution, thereby indicating that the eigenvalue
analysis is able to provide physical insights about the instability in
such flows.

In summary, the analysis in the present study shows that the
current EIM(E) model’s performance is satisfactory both in predict-
ing the linear instability threshold and characteristics of the nonlin-
ear waves at the moderate distance from the threshold. The value
of the free parameter A that is intrinsic in the ellipse profile taken
as the weight function considered in the present study (namely,
A = 40) is based on the closeness of the linear growth rate and phase
speed for this value of A to the available experimental observations.
This choice has also been justified by the values of linear growth rate
derived from nonlinear evolution (as is evident from Table III). The
model’s performance is as good as the other available models such
as EIM(P)47 and WRIBL.33 A detailed and thorough investigation
on the performance of the model predicting wave shapes and ampli-
tudes as compared to other existing models is postponed to a future
study.
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