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Abstract

The current study challenges the multi-objective optimization of electric discharge machining (EDM) parameters. EDM 
is used for creating profiles by machining of workpiece that are difficult to machine by conventional method. In the 
current work four responses such as material removal rate (production rate), tool wear rate, surface roughness (quality) 
and circularity (profile) are collectively investigated with varying controlling parameters. The human decision for best 
combination of controlling parameters for highest performance has uncertainties, which results in inferior solution. The 
multiple responses along with uncertainties and impreciseness can be addressed by combining a neuro-fuzzy system 
with particle swarm optimization (PSO). To illustrate the superiority of the proposed approach a set of experiment have 
been conducted in EDM process using AISI D2 tool steel as workpiece and brass tool. The experimental plan was made 
according to the Box-Behnken response surface methodology design with four process parameters namely discharge 
current, pulse-on-time, duty factor, and flushing pressure. The four response parameters such as material removal rate, 
tool wear rate, surface roughness, and circularity of machined components were optimized simultaneously. One unique 
Multi-response Performance Characteristic Index was obtained by combining the four responses using the proposed 
neuro-fuzzy technique. A regression model was developed on single response and optimized by PSO to obtain the 
optimal parameter setting. An experiment was conducted on optimal parameter to test the optimum performance. It 
is observed that the EDM responses were affected significantly by discharge current and pulse-on-time. The increase in 
pulse-on-time leads to larger surface cracks and more micro-pores on the machined surface.
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Article Highlights 

• RSM was proven to be an effective statistical tool for reducing the experimental runs, and also establishes the relation 
between multiple inputs and single output.

• The neuro-fuzzy system combined with PSO results a suitable model to convert multiple response into an equivalent 
single response.

• The presented approach can be a practical method for situations where multiple conflicting objectives are needed 
to be optimized at the same time.
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1 Introduction

The Electrical Discharge Machining (EDM) is a state of the 
art machining process. EDM is chosen over the conven-
tional machining processes which are unable to cut the 
high strength to weight ratio and toughened conductive 
materials. In the EDM process a series of electric sparks 
is established between the tool and the workpiece caus-
ing the removal of material through controlled erosion. 
The thermal energy produced due to spark melts and 
vaporizes the workpiece material. The EDM process finds 
diversified applications in aerospace, ordnance, and auto-
mobile industries [1]. The complexity of the EDM process 
results in difficulty to establish the relation between the 
process parameters and their responses. However, the pro-
cess performance measures such as material removal rate 
(MRR), tool wear rate (TWR), surface roughness 

(

R
a

)

 , and 
circularity 

(

r
1
∕r

2

)

 have been considered for performance 
analysis [2]. Many process parameters influence the above-
mentioned responses in differnt ways. Parameters such 
as discharge current 

(

I
P

)

 , pulse-on-time 
(

T
on

)

,duty factor 
(τ) , and flushing pressure 

(

fP

)

 significantly affect the EDM 
process [3].

In this work, four control parameters I
P
,T

on
 , τ , and fP at 

three levels were considered for the investigation. The 
experimental runs were reduced by utilizing the Box-
Behnken design of response surface methodology (RSM) 
without losing the accuracy of data [4, 5]. According to 
Box-Behnken design (four-factor three-level) twenty-
seven experimental runs were conducted where the 
runtime of each experiment was one hour. In most of the 
earlier applications of RSM, optimization was carried for 
a single response. However, it can be extended for multi-
ple response optimization [6, 7]. The responses can be of 
three types namely larger-the-best, nominal-the-best and 
smaller-the-best. Most of the engineering applications or 
physical processes encounter multiple responses which 
are often conflicting in nature [8].

In the multiple response optimization problems, it is a 
usual practice to convert multiple responses into an equiv-
alent single unique response via multi-attribute decision-
making process. The fuzzy decision-making approach and 
fuzzy with Taguchi experimental design was used to deal 
with the multi-response optimization problems [9, 10]. 
In the fuzzy theory the concept of membership function 
used to deal with inexact information obtained through 
the experimental process instead of crisp variables. It is dif-
ficult to find out the most suitable membership functions 
for the experimental data and developing the rule base 
required for the inference engine. In this research work, 
the neuro-fuzzy system was employed on the experimen-
tal data for obtaining a single unique equivalent response 

for four performance characteristics of the EDM process. 
The AISI D2 tool steel was considered as work material, 
which is hard to machine using conventional machine 
tools. Brass was considered as tool material, due to good 
conductivity and less erosion property. The proposed 
neuro-fuzzy system produces a single response, known 
as Multiple Performance Characteristic Index (MPCI). The 
relation between the MPCI and controlling process param-
eters were articulated mathematically by considering MPCI 
as a single response. A regression analysis was carried out 
using RSM design to obtain the regression equation. Fur-
ther, PSO has been utilized to retrieve the most suitable 
parametric combination that maximizes the MPCI [11].

The performance enhancement in EDM is a well-
researched area. However, finding the best suitable 
machining parameters for finest performance in EDM is 
a challenging task. Lee and Li [12] studied the influence 
of parameters such as gap voltage, discharge current, 
pulse duration, pulse interval, and flushing pressure on 
the rate of material removal, wear rate of the tool, and 
surface roughness of EDM process. They used tungsten 
carbide (WC) as workpiece and copper tungsten (CuW) 
as electrode material. Tebin et al. [13] experimented on 
EDM to study the effect of discharge current, the pulse-
on duration, the pulse-off duration, the tool electrode 
gap, and the tool material on MRR and TWR using steel 
50CrV4 as workpiece, copper, and graphite as a tool. The 
effect of EDM machining parameters such as pulse cur-
rent, gap voltage, and pulse-on-time on MRR and TWR 
was investigated by Habib [14] using RSM design. The 
MRR and TWR values were increased with increasing val-
ues of process parameters. Singh et al. [15] conducted 
experiments on EDM to obtained MRR, TWR, Ra, and ana-
lyzed the variation in responses with peak current, gap 
voltage, pulse-on-time, and duty cycle. RSM design was 
used to conduct experiments on EDM by Pradhan and Bis-
was [16]. They investigated the effect of four controllable 
input variables such as discharge current, pulse duration, 
pulse-off-time, and voltage on machining performance 
of AISI D2 steel and copper as work piece-tool combina-
tion. It is observed that the discharge current and pulse-
on-time have a significant effect on surface roughness. 
Helmi et al. [17] investigated the surface roughness and 
MRR in the electro discharge grinding process employ-
ing the Taguchi method when tool steel is machined with 
brass and copper electrodes. They found that, peak cur-
rent and pulse-on-time were the important parameters 
influencing the performance characteristics. Chattopad-
hyay et al. [18] proposed a design of experiment (DOE) 
method to experiment on rotary EDM with EN8 steel and 
copper as work piece-tool pair. The relations between per-
formance characteristics (MRR and Electrode Wear Rate) 
and process parameters (peak current, pulse-on-time and 



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:701  | https://doi.org/10.1007/s42452-021-04668-4 Research Article

rotational speed of electrode) was established. The peak 
current and rotational speed of the tool have a significant 
effect on both the responses. Regression models and DOE 
approaches have been employed extensively in the EDM 
process to obtain the best machining parameters [7, 19, 
20]. The DOE approaches are well suited to obtain optimal 
parametric combinations for a single response problem. 
The method breaks down when multiple responses are 
simultaneously optimized. In this direction, a fuzzy TOPSIS 
approach was proposed to convert multi-responses into a 
single response [9].

A combination of Genetic algorithm (GA) and artifi-
cial neural network (ANN) was employed to retrieve best 
suited process parameters to improve performance in 
EDM process by utilizing graphite as a tool and nickel-
based alloy as a work piece [21]. A similar approach has 
been considered by Su et al. in [22] from the rough cutting 
to the finish cutting stage. In most of the studies, multiple 
objectives are transformed into a unique single objective 
and attempt to find optimal parameters. To solve the sin-
gle response optimization problem of Taguchi approach, 
Liao [23] proposed an effective method named as PCR-
TOPSIS which is a combination of process capability ratio 
(PCR) and TOPSIS theories. Singh et al. [24] used the adap-
tive neuro-fuzzy inference system for predictive analysis 
of EDM responses. The MRR and Ra in the EDM process 
were optimized using ANN with PSO [25]. Last few decade 
researchers are attracted towards artificial intelligence (AI) 
techniques such as ANN, GA, and fuzzy logic, to model 
and optimize the manufacturing processes. These new 
techniques can minimize the few limitations of the tradi-
tional process modeling approaches. To optimize multi-
ple responses a neuro-fuzzy system was used by Antony 
et al. [8]. A combination of back propagation neural net-
work (BPNN) with Levenberg Marquardt (LM) algorithm 
was used by Panda and Bhoi [26] to predict MRR. The AI 
technique such as simulated annealing (SA), ANN, genetic 
algorithm (GA) were utilized to optimize EDM process 
parameters [27, 28].

PSO is a computational simulation technique based 
on the movement of organisms such as gather of birds 
and groups of fish used to solve optimization problems 
[29]. PSO has a populace of search points to investigate 
the search space which is referred to as a ‘particle’ and the 
particles represent a potential solution. The best solution 
is known as a fitness function value [30]. Particles having 
the best global value is determined by the fitness function 
value in the current swarm (gbest), and also determines 
the best position of each particle over time, pbest, i.e. in 
current and all previous moves. In the search domain, par-
ticles move their position and the velocity updated accord-
ing to its own flying experience toward its pbest and gbest 
locations [31]. The application of PSO is found out in many 

engineering optimization problems due to its certain 
characteristic, such as fast convergence capability, less 
number of controlled parameters used for optimization 
and convergence guaranteed [32–35]. Ali et al. optimized 
EDM process by machining AISI2312 hot worked steel alloy 
using neural network and PSO [43]. Muthuramalingam 
et al. investigated the white layer thickness EDM processed 
silicon steel. They also analyse the process parameter using 
a fuzzy interference system (ANFIS, fuzzy TOPSIS and fuzzy 
VIKOR) [44, 45]. The fuzzy-based AI also used for optimiz-
ing EDM and ECM process [46–48]. Marichamy et al. cast 
brass to perform EDM machining. They observed that the 
current is the most significant parameter which affects 
MRR and TWR [49–51].

It is evident from the literature review that the EDM pro-
cess has been extensively studied by researchers. However, 
in this paper the effort was made to study the EDM in the 
context of multi-objective optimization of four responses. 
The effect of four controllable parameters namely dis-
charge current (I

P
) , pulse-on-time (T

on
) , duty factor (τ) , 

and flushing pressure (fP) were investigated on four EDM 
performance responses such as MRR, TWR, R

a
 , and r

1
∕r

2
 . 

This combination of input and output parameters were 
rarely investigated. The multi-response were converted to 
a single response and further optimized to get the set of 
input parameters for best output performance.

Fig. 1  EDM machine set-up
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2  Material and method

Experiments were carried out in a die-sinking EDM 
machine (Electronica Electra plus PS 50ZNC) in the 
dielectric medium as shown in Fig. 1. The controllable 
factors such as flushing pressure, pulse-on-time, dis-
charge current, and duty factor (�) where τ is defined as 

τ = Ton∕
(

Ton + Toff

)

 in percentage ( Toff denotes pulse-
off–time) were considered for the investigation. The work-
piece used for EDM was AISI D2 steel, which is an air-hard-
ened high carbon, high chromium tool steel. AISI D2 tool 
steel possess material composition such as Carbon 1.55%, 
Manganese 0.6%, Silicon 0.6%, Chromium 11.8%, Molyb-
denum 0.8%, Vanadium 0.8% and rest is iron. The density 
of D2 tool steel is 7.7 ×  103 kg/m3. In EDM large amount 
of heat evolves during the spark. Therefore, a good con-
ductive tool is required which have an adequate melting 
point. Pure brass in a cylindrical shape (diameter 25 mm) 
was considered a tool. The workpiece used in the EDM 
operation was 6 mm thick plate, which was sliced from a 
long bar of 85 mm diameter. The weight of the tool and 
workpiece was measured before and after the machining 
process in a high precision electronic weight measuring 
machine (least count = 0.001 g). The machining operation 
was carried out for one hour for each experimental run. 
This time has been desided from pilot experiments con-
ducted to get satisfactory responses. Exclusively for cir-
cularity calculation a perfect round shape was necessary, 
which was obtained after 1 h machining.

The response surface methodology (RSM) was used 
to collect data, developing mathematical expression, 
improving, and optimizing processes. This deals with the 
situation where several input variables potentially influ-
ence the performance measure or quality of the product 
or process. The performance measure or quality is known 
as the response. The second-order model is widely used in 
response surface methodology due to its flexibility and it 
can take a wide variety of functional forms given in Eq. 1 
[16].

where Y is the corresponding response of input variables 

X
i
 , X2

i
 and XiXj are the square and interaction terms of 

parameters respectively. β
0
 , β

i
 , β

ii
 and βij are the unknown 

regression coefficients and ε is the error.
The experimental design is made as per the Box-

Behnken design of response surface methodology (RSM) 
with four factors because it is capable of generating a 
satisfactory prediction model with few experimental runs 
[5, 7]. The parametric levels are coded using the relation 
shown below [7]:

where Z is a coded value (− 1, 0, 1), Xmax and Xmin is the 
maximum and minimum value of the actual variable, and X 

(1)Y = β0 +

k
∑

i=1

βiXi +

k
∑

i=1

βiiX
2
i
+

k
∑

i,j=1,i≠j

βijXiXj + ε

(2)Coded Value (Z) =
X −

Xmax−Xmin

2

Xmax−Xmin

2

Table 1  Factors and their levels

Parameters Symbols Codes

− 1 0 1

Discharge current (Ip) in A A 3 5 7

Pulse on time (Ton) in µs B 100 200 300

Duty Factor (τ) in % C 80 85 90

Flushing Pr. in Kg/cm2 D 0.2 0.3 0.4

Table 2  Experimental design

Run order Ip(A) Ton(B) τ(C) Fp(D)

1 0 − 1 0 1

2 0 0 1 − 1

3 −1 0 1 0

4 1 0 0 − 1

5 0 0 0 0

6 0 0 0 0

7 0 0 − 1 1

8 − 1 0 0 1

9 − 1 − 1 0 0

10 0 − 1 1 0

11 1 1 0 0

12 1 − 1 0 0

13 0 1 0 1

14 0 0 − 1 − 1

15 0 1 1 0

16 0 1 0 − 1

17 0 0 1 1

18 1 0 − 1 0

19 0 − 1 0 − 1

20 0 − 1 − 1 0

21 0 1 − 1 0

22 1 0 0 1

23 − 1 1 0 0

24 − 1 0 − 1 0

25 − 1 0 0 − 1

26 0 0 0 0

27 1 0 1 0
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is the actual value of the corresponding variable. The value 
of parameter setting in coded form are shown in Table 1.

In the Box-Behnken experimental design  2 k = 16 fac-
torial points (k = 4 is the number of process parameters), 
eight axial points, and three center points are considered. 
The layout of the experimental design is shown in Table 2.

Each experiment was run for one hour and the 
responses are calculated as follows [18]:

 i. 

 ii. 
where ΔW

W
 is the weight of material removed from 

the workpiece during machining and ΔW
t
 is the 

weight of material removed from the tool during 
machining, �

W
 and �

t
 are densities of workpiece and 

tool respectively, T is the time of machining.
 iii. Roughness was measured by a portable stylus type 

profilometer (Taylor Hobson, Surtronic 3 + talysurf ).

 iv. Circularity was measured as the ratio of minimum to 
maximum Feret’s diameter. Where Feret’s diameter is 
the shortest distance between the parallel tangents 
drown on two opposite sides of the hole as shown in 
Fig. 2 [36]. The machined area was magnified (45-X 
magnification) by Samsung camera attached to a 
RADIAL INSTRUMENT microscope and Feret’s diam-
eter was measured by drawing tangents as shown in 
Fig. 2.

(3)MRR =
1000 × ΔW

W

ρ
W
× T

mm
3∕min

(4)TWR =
1000 × ΔW

t

ρ
W
× T

mm
3∕min

3  Methodology

This paper presents a structured and generic methodol-
ogy that includes both RSM as well as AI tools to minimize 
the uncertainty in decision-making. The investigation is 
made to convert multiple responses into a single perfor-
mance characteristic index via a neuro-fuzzy based model. 
The relationship between MPCI and process parameters 
is developed through a statistically valid regression equa-
tion. PSO is used to find out the best parameter setting 
using the developed process model. Assume n experi-
ments were conducted utilizing RSM and responses 
obtained as MRR, TWR, R

a
 , and Circularity. The responses 

were divided into three main categories: the smaller-the 
better (STB), the nominal-the-best (NTB), and the larger 
the-better (LTB) responses. In practice, all the responses 
are not of the same category. Therefore, characteristic 
responses are converted to respective S/N ratios as fol-
lows [37]:

The larger-the-best performance characteristic can be 
expressed as:

The smaller-the-best performance characteristic can be 
expressed as:

where Y
i
 is the ith experimental data of response.

All the S/N ratio responses 
(

Xij

)

 are normalized to obtain 
a normalized response 

(

Zij
)

 so that they lie in the range, 
0 ≤ Zij ≤ 1 . Normalization is carried out to avoid the 
scaling effect and minimize the variation of the S/N ratio 
obtained at different scales. For responses of smaller-the-
better type and larger-the-better normalization is carried 
out using Eq. 5 [16].

e fuzzy logic process can be applied effectively, where 
the input–output have nonlinear relation. The fuzzy logic 
can classify the input and output data sets broadly into 
different fuzzy classes. The membership function can be 
assign to crisp data sets by inference, intuition and AI tools. 
The common data clustering techniques are hard c mean 
clustering (HCM), and fuzzy c-mean clustering (FCM). HCM 

S∕Nratio = −10 log10

(

1

n

∑ 1

Y2
i

)

S∕Nratio = −10 log10

(

1

n

∑

Y2
i

)

Z =
X −min {X, J = 1, 2,… ., n}

max {X, j = 1, 2,… .., n} −min {X, j = 1, 2,… ., n}

(5)

Zij =
Xij −min

{

Xij , j = 1, 2, 3,…… .., n
}

max
{

Xij , j = 1, 2, 3,…… .., n
}

−min
{

Xij , j = 1, 2, 3,…… .., n
}

Fig. 2  Feret’s diameter
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is used to assign a single membership in anyone, and 
only one, data cluster [22, 28]. However, the FCM extends 
crisp classification idea into a fuzzy classification notion. 
Therefore, the membership to the various data points can 
be assigned in each fuzzy set (fuzzy class, fuzzy cluster), 
along with the restriction (analogous to the crisp classifi-
cation) that the sum of all membership values for a single 
data point in all of the classes has to be unity. FCM mini-
mizes the membership function assigning uncertainty of 
crisp data into different fuzzy classes. The data points are 
grouped into c clusters by calculating the fuzzy partition 
matrix using fuzzy c-means algorithm. Therefore, the cent-
ers (centroids) are clustered, that minimize dissimilarity 
function J

m
 [37].

The membership value for kth data point in the ith 
cluster is μ

ik
 , m’ is the weighting parameter varying in the 

range [1, ∞], the matrix of fuzzy partition is U, viz cluster 
center matrix, and similarity matrix is d, given in Eq. 7. Uti-
lizing the Euclidean distance measure to characterize the 
similarity, the elements of d are calculated by [37]:

where m is the number of features, x
k
 is kth data point and 

 vi is the centroid of ith cluster that can be presented by 

 (for i = 1 to c) and the cluster centers are calculated using 
the following formulation [37]

where x is a fuzzy variable describing data point. In 
essence, fuzzy partitioning is performed through an itera-
tive optimization utilizing the following formulation:

It should be noted that sum of membership values fora 
cluster must be equal to 1 i.e.

(6)

Jm (U∗, v∗) = min
[

Jm (U , v)
]

= min

[

n
∑

k=1

c
∑

i=1

(

�ik

)m�(

dik

)2

]

(7)dik = d
(
xk − vi

)
= ‖

‖xk − vi
‖
‖ =

√√√
√

m∑

j=1

(
xkj − vij

)2
(for i = 1 to c and k = 1 to n)

Vi =
{

Vi1, Vi2, … ., Vim

}

(8)vij =

∑n

k=1
�
m�

ik
xkj

∑n

k=1
�
m�

ik

(for i = 1 to c and j = 1 to m)

(9)
uik(s + 1) =

1
�

∑c

j=1

�

dik (s)

djk (s)

�
2

m�−1

�

∑

i∈Ik

μ
ik
= 1

Finally, the best available solution within a predefined 
accuracy criterion is determined by:

where ε is error level for the termination of iteration 

which varies between 0 and 1. In detail, this iterative pro-
cedure converges to a local minimum of J

m
 . Algorithmi-

cally, fuzzy c-means methodology can be explained by a 
flowchart given in Fig. 3.

The membership function is repeatedly updated when 
the system parameters continuously change in a non-
deterministic fashion. A neural network (NN) is used for 
these types of systems, as it is capable of modifying itself 
by adapting the weights. Neural network learns by modify-
ing its structure rather than adding new rules to its knowl-
edge base [26]. In this work, a backpropagation neural 
network (BPN) is implemented in output data to generate 
the fuzzy membership function for fuzzy classes. The rela-
tionship between the training data and the corresponding 
membership values (from FCM) is established by simulat-
ing it in BPN. The membership value is assigned to each 
training-data in different fuzzy classes. The performance 
of NN is checked by testing-data. After training of NN, it 
is used to determine the membership values of any input 
data in the different fuzzy classes (Fig. 4).

A neural network use models that simulate the work-
ing model of the neurons in the human brain. It consists 
of two fixed layers an input layer and an output layer and 

‖
‖
‖
U
(r+1) − U

(r)‖
‖
‖
≤∈

s = 0

Initialize U matrix randomly

yes

Compute v matrix (Eq. 7)

U(s+1)-U(s) < ε

Modify U matrix (Eq. 8)

Calculate d matrix (Eq. 6)

Iteration is terminated

no

s = s+1

Fig. 3  Flow Chart for fuzzy c-mean clustering
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one or more hidden layers. In the input layer, several neu-
rons are equal to the number of input data to the neural 
network and in the output layer, the number on the neu-
ron is equal to the number of output, but in the hidden 
layer, the number of neurons is optimized to minimize the 
error between the input and output predicted values [28]. 
Among the available neural network models, supervised 
learning neural networks are used to solve the parameter 
design problem with multiple responses and to establish a 
functional relationship between control factors and qual-
ity characteristics. In a neural network, a set of training 
input data along with a corresponding set of output data is 
trained to adjust the weights in a network. Then, the well-
trained network is used to predict the membership func-
tions to different fuzzy classes (clusters). The m-h-n neural 
network architecture indicates a basic three layered BPN 
represented by the m-h-n neural model, where parameters 
m, h, and n are the total number of neurons in input, hid-
den and output layers, respectively. For a multiple input 
and multiple output system, the data set for input and out-
put comprising of vectors {(x1;  x2;  x3...xn);  (y1;  y2;  y3..  yn)} 
are used. A weight  wi as path joiner is randomly assigned 
in different layers. Then, an input x from the training data 
set is passed through the neural network, corresponding 
to which an output y is computed and compared with the 
desired output. The error (e) is computed as:

Error e . is distributed to the neurons in the hidden layer 
using a technique called back-propagation. The different 
weights W

i
 . connecting different neonsn the network are 

updated as:

where � is the learning rate, e is associated with error, x
i
 

input to the ith neuron.
The learning rate is defined as the rate by which a neu-

ral network updates its weight to minimize the error. It 
should be kept low to escape the local optima. The input 
value x

i
 is again passed through the neural network with 

updated weights, and the errors are computed. This itera-
tion technique is continued until the error value of the 
final output is within the prescribed limit. This procedure is 
continued for all data in the training data set. Then, a test-
ing-data set is used to verify the efficiency of the neural 
network to simulate the nonlinear relationship. When the 
network attains a satisfactory level of performance, a rela-
tionship between input and output data established, and 
the weights are used to recognize the new input patterns.

It is advantageous to use the FCM as it minimizes the 
uncertainty in assigning the membership function of crisp 

(10)e = Yacctual − Ydesired

(11)W
i(new) = W

i(new) + �ex
i

Fig. 4  Training in neural 
network
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data into various fuzzy classes. The BPN as training data set 
used each data and its corresponding membership values 
from FCM. The membership values are assigned to training 
data by simulating input data and membership values in 
different fuzzy classes. Then the membership values are 
determined for input data. The defuzzification method is 
the conversion of a fuzzy quantity to a specific quantity. 
Among the various methods, the COA method is used for 
defuzzifying the fuzzy output function into crisp data [38, 
39]. In this method, the fuzzy output μA(y) . transform into 
a crisp value y . It is given by the expression as in Eq. 12 [37]

4  Particle swarm optimization

PSO is a stochastic optimization algorithm that was origi-
nally motivated by the thinking model of an individual of 
the social organism such as birds, fish, etc. by Kennedy 
and Eberhart [15]. The PSO has particles driven from a 
natural group with communications based on evolution-
ary computation and it combines self-experiences with 
social experiences. Here a contestant is considered as a 
particle and the objective is to get a global optimum. In 
PSO algorithm uses some flying particles from the search 
area as well as the movement towards a promising area. 
The flying particle is compared with changing solutions 
and the search area is compared with current and possi-
ble solutions. After each iteration, the particles update its 
position to a goal (fitness), and local neighborhood parti-
cles share memories of their “best” positions. The particle 
velocities and their subsequent positions are adjusted by 
these memories [32, 40]. In the standard PSO with ‘Z’ parti-
cles in the D dimensional search space, the potential solu-
tion can be represented by the particle’s position vector 

X
i
(t) . The position X

i
(t) , of the ith particle is adjusted by a 

stochastic velocity V
i
(t) . Thus, the particle moves according 

to the following equation [32]:

where i = 1, 2, ….., N, pbesti (t) is the best solution that par-
ticle i s obtained until iteration generation t, and gbesti(t) 
is the best solution obtained from pbesti(t) in the whole 
swarm at iteration t. w is inertia weight, C

1
 is the cognition 

learning factor and C
2
 is the social learning factor; r

1
 and r

2
 

are the random numbers uniformly distributed in (0,1) [29, 

(12)y =
∫ �A ⋅ y dy

∫ �A(y) dy

(13)

Vi(t) = WXi(t) + C1r1
(

pbesti(t) − Xi(t)
)

+ C1r1
(

gbestj(t) − Xi(t)
)

(14)X
i(t + 1) = X

i(t) + V
i(t + 1)

30, 41]. The procedure for implementing the PSO is given 
by the following steps.

Step 1: Initialization of swarm positions and veloci-

ties: A uniform probability distribution function is used in 
the D dimensional problem space to initialize a population 
(array) of particles with random positions and velocities.

Step 2: Evaluation of fitness of particle: The fitness 
function is maximized in evaluation of fitness value of each 
particle.

Step 3: Comparison to ����� (personal best): Each 
particle’s fitness is compared with the particle’s pbest . If 
the obtained current value is superior than the exsisting 

pbest , then the pbest value is replaced with the current 
value and the pbest location is updated by current location 
in a D-dimensional space.

Step 4: Comparison to ����� (global best): The fitness 
is compared with the previous pbest population. If the 
obtained current value is superior than gbest , then gbest 
is resetted to the array index and value of current particle.

Step 5: Updating of each particle’s velocity and 

position: Modify the velocity V
i
 , and particle’s position, X

i
 , 

according to Eq. 13 and Eq. 14 respectively.

5  Result and discussion

The experiments have been conducted as per the experi-
mental plan shown in Table 2. Four responses are meas-
ured as explained in Sect. 3. Out of four responses, two 
responses such as MRR and circularity are to be maximized 
whereas two responses EWR and Ra are to be minimized. 
Since the responses are contradicting in nature, they were 
converted to S/N ratio to make them into the same char-
acteristic nature as explained in Sect. 4. The S/N ratios of 
responses are shown in Table 3. The S/N ratios exhibit large 
variation as evident from Table 3. Therefore, they were nor-
malized using Eq. 5 and normalized values are presented 
in Table 3. Then, a supervised learning BPN is modeled to 
find the membership function. These normalized data sets 
have been clustered by using fuzzy clustering into four 
fuzzy classes R

1
 , R

2
 , R

3
 , and R

4
 . There are twenty seven num-

bers of data sets as listed in Table 3, each of them compris-
ing four responses or coordinates. The matrix U as shown 
in Table 4, gives the value of the membership of each data 
into four fuzzy classes. This occurs when the objective 
function of fuzzy c-means (FCM) is converged after thirty 
four iterations. The numbers for each cluster indicate the 
experiment number or run number.

R
1
 = 4 8 10 12 14 16 18 20 22 24.

R
2
 = 5 6 7 23 25 26 27.

R
3
 = 2.

R
4
 = 1 3 9 11 13 15 17 19 21.
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Since four input and four output parameters were 
included in the experiment, similar numbers of neurons in 

input layer and output later have been chosen. The hidden 
layer neurons were determined by various Backpropaga-
tion Neural Networks (BPN) model. The models have been 
chosen to achieve performance error equal to 0.001. Six 
BPN models 4–5–4, 4–6–4, 4–7–4, 4–8–4, 4–9–4, 4–10–4 
have been selected. Data set 1–18 are selected as train-
ing data and data set 19–27 have been used to test the 
performance of the selected neural network. Finally, BPN 
architecture 4–8-4 showed minimum root mean square 
error (RMSE). Learning and momentum parameters were 
set at 0.12 and 0.50. The number of epochs the BPN was 
run was 31,250. In spite of higher number of iterations to 
converge at a final value, low learning rate was used to 
ensure the neural network to escape from local optima.

Initially quasi-random weights have been assigned for 
four layers. Thereafter, the data serial number 1 with input 
co-ordinates X

1
= 0.125995 0, X

2
= 0.698949 , X

3
= 1 , and 

X
4
= 0.4145741 corresponding to the output membership 

0.0546 ( R
1
 ), 0.1098 ( R

2
 ), 0.0028 ( R

3
 ) and 0.8328 ( R

4
 ) was 

entered. The output of the network was computed and 
compared with the desired output to calculate the error. 
The initial assigned weights were repeatedly adjusted to 
minimize the error, until the target achieved to 0.001 as 
shown in Fig. 5. Similarly, data set (2–18) are entered and 
weights are readjusted. The data set (19–27) are used to 
test the performance of the network. It has been observed 
that after 31,250 iterations, the network achieves a sat-
isfactory level of error as shown in Fig. 4. The obtained 
adjusted membership values are shown in Table 5.

Regression curves are plotted as shown in Fig. 5 and 
Fig.  6, between actual membership function and pre-
dicted membership function via neuro-fuzzy model for 
training data and testing data respectively. Figure 5 and 6 
shows that the data are well fitted because a high degree 
of correlation coefficient (R) = 0.99897 for training and 
(R) = 0.99854 for testing data. This indicate that the data 

Table 3  Signal-to-noise ratio 
and Normalized value

Sl. no I
P
(A) T

on
(µs) τ(%) fP Signal-to-noise ratio Normalized value

MRR TWR R
a

Circular-
ity

MRR TWR R
a

Circular-
ity

1 3 100 85 0.3 3.94 − 5.31 − 12.02 − 1.44 0.1260 0.6989 1.000 0.4146

2 7 100 85 0.3 11.36 − 10.84 − 13.20 − 1.46 0.6240 5.6097 0.805 0.2876

3 3 300 85 0.3 3.01 − 1.93 − 13.48 − 1.40 0.0000 1.0000 0.758 0.6478

4 7 300 85 0.3 16.95 − 10.28 − 17.60 − 1.35 1.0000 0.2559 0.077 0.9589

5 5 200 80 0.2 9.29 − 5.59 − 16.28 − 1.40 0.4850 0.6740 0.295 0.6574

6 5 200 90 0.2 11.17 − 8.85 − 15.78 − 1.42 0.6110 0.3833 0.379 0.5063

7 5 200 80 0.4 10.67 − 9.02 − 16.12 − 1.46 0.5780 0.3681 0.322 0.2686

8 5 200 90 0.4 12.40 − 10.25 − 15.46 − 1.40 0.6940 0.2582 0.431 0.6512

9 3 200 80 0.3 3.87 − 2.30 − 14.44 − 1.44 0.1210 0.9669 0.600 0.4161

10 7 200 80 0.3 14.48 − 9.00 − 16.91 − 1.42 0.8340 0.3701 0.191 0.4877

11 3 200 90 0.3 6.34 − 5.59 − 13.27 − 1.48 0.2876 0.6740 0.792 0.1541

12 7 200 90 0.3 15.89 − 13.15 − 16.69 − 1.37 0.9287 0.0000 0.228 0.8434

13 5 100 85 0.2 7.62 − 8.79 − 12.63 − 1.46 0.3735 0.3890 0.899 0.2861

14 5 300 85 0.2 11.36 − 6.82 − 18.07 − 1.42 0.6248 0.5642 0.000 0.4995

15 5 100 85 0.4 8.06 − 8.88 − 12.40 − 1.43 0.4032 0.3803 0.936 0.4355

16 5 300 85 0.4 11.73 − 7.00 − 16.93 − 1.34 0.6494 0.5485 0.189 1.0000

17 3 200 85 0.2 5.53 − 4.05 − 14.27 − 1.50 0.2328 0.8114 0.628 0.0000

18 7 200 85 0.2 15.43 − 11.58 − 16.22 − 1.39 0.8981 0.1396 0.306 0.6710

19 3 200 85 0.4 5.47 − 4.50 -13.16 − 1.46 0.2288 0.7709 0.811 0.2827

20 7 200 85 0.4 15.56 − 12.03 − 14.07 − 1.38 0.9066 0.0997 0.661 0.7783

21 5 100 80 0.3 6.1 − 6.11 − 14.79 − 1.47 0.2716 0.6279 0.542 0.1989

22 5 300 80 0.3 9.73 − 4.61 − 17.33 − 1.37 0.5150 0.7611 0.123 0.8041

23 5 100 90 0.3 8.38 − 9.97 − 14.10 − 1.44 0.4242 0.2831 0.656 0.4075

24 5 300 90 0.3 12.57 − 8.60 − 16.94 − 1.39 0.7056 0.4056 0.187 0.7058

25 5 200 85 0.3 11.24 − 8.66 − 15.27 − 1.44 0.6165 0.4006 0.463 0.3981

26 5 200 85 0.3 11.08 − 8.99 − 15.22 − 1.47 0.6060 0.3706 0.470 0.1905

27 5 200 85 0.3 11.00 − 8.81 − 15.86 − 1.50 0.6007 0.3868 0.365 0.0099
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are well trained and can be predicted. Figure 6 shows the 
membership functions for output predicted by neural net-
work. After getting fuzzified value, it is needed to defuzzify 
them to get a crisp value containing the combined quality 

characteristic which can be used as higher the best crite-
ria. This has done by center of area (COA) method. These 
defuzzified data are called MPCI, listed in Table 6.

The MPCI values are considered as single response 
and analysis of variance shown in Table 7, it is observed 
that the factors I

P
 , T

on
 , and τ and square terms I

P
× I

P
 and 

T
on

× T
on

 , and interaction τ × Fp are statistically signifi-
cant. The highest effect was observed in I

P
 followed by 

T
on

 , T
on

× T
on

 , I
P
× I

P
 , τ × Fp . I

P
 has highest effect because it 

directly contribute to the heat generation. As I
P
 increases 

the spark become stronger and more erosion arise. The 
process model is obtained by regression analysis as given 
in Eq. 15 and coefficient of determination (R2) was found 
to be 91.72%.

Figure 7 shows the response surface for MPCI in relation 
to the process parameters of discharge current and pulse 
on time. It can be seen from the figure that the MPCI tends 
to increase rapidly with an increase in peak current for any 
value of pulse-on-time. Figure 7 also indicates that maxi-
mum MPCI value is obtained at high peak current (7 A) and 
high pulse on time (300 μs). This is due to their principal 
control over the input spark energy. As the discharge cur-
rent increases, it generates a strong spark which produces a 
higher temperature as a result of more material was eroded 
from the work piece. Figure 8 shows the response surface 

(15)

MPCI = 0.404 + 0.200 × IP + 0.104 × Ton

+ 0.036 × τ − 0.039 × Fp + 0.120

× (IP × IP) + 0.128 × (Ton × Ton)

+ 0.004 × (τ × τ) + 0.029 ×
(

Fp × Fp
)

− 0.062 ×
(

IP × Ton
)

− 0.029 ×
(

IP × τ
)

+ 0.082 ×
(

IP × Fp
)

+ 0.001 ×
(

Ton × τ
)

+ 0.033 ×
(

Ton × Fp
)

+ 0.039

× (τ × Fp)(in coded form)

Table 4  Membership values from FCM

Experi-
ment no

Membership 
value of R

1

Membership 
value of R

2

Membership 
value of R

3

Member-
ship value 
of R

4

1 0.0546 0.1098 0.0028 0.8328

2 0 0 1 0

3 0.1217 0.1883 0.0076 0.6824

4 0.7892 0.1494 0.0033 0.0580

5 0.349 0.449 0.0032 0.1988

6 0.1526 0.8095 0.0006 0.0373

7 0.0746 0.8773 0.0008 0.0473

8 0.6384 0.3088 0.0012 0.0516

9 0.074 0.1454 0.0037 0.7769

10 0.6028 0.3415 0.0016 0.0541

11 0.0277 0.0827 0.0012 0.8885

12 0.7546 0.1805 0.003 0.0619

13 0.1094 0.3215 0.0032 0.5659

14 0.4509 0.4248 0.0036 0.1206

15 0.1417 0.3438 0.0037 0.5108

16 0.6917 0.2075 0.0037 0.0971

17 0.0703 0.1876 0.0038 0.7384

18 0.8064 0.1547 0.0014 0.0375

19 0.0056 0.0141 0.0002 0.9801

20 0.5627 0.3126 0.0042 0.1205

21 0.0634 0.2492 0.0019 0.6855

22 0.4693 0.3369 0.0056 0.1881

23 0.1415 0.6276 0.0020 0.2288

24 0.8798 0.0977 0.0006 0.0219

25 0.0158 0.9749 0.0001 0.0091

26 0.0813 0.8300 0.0012 0.0876

27 0.1538 0.6585 0.0033 0.1844

Fig. 5  a Regression plot for 
training data b Regression plot 
for testing data
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for MPCI in relation to the process parameters of discharge 
current and duty factor. It can be observed from the figure 
that MPCI increases as I

P
 increases for any value of τ.

PSO technique was used to determine the optimal 
parameter setting using the model shown in Eq. 15. The 
PSO algorithm was run for 100 iterations but converged at 
59 iterations as shown in Fig. 9. The optimal value of MPCI is 
obtained as 0.946 at parametric values of I

P
=0.96, T

on
=0.99, 

τ = 0.11, Fp=0.105 in coded form. These values are decoded 
using Eq. 2 and actual values of factors are found to be I

P

=6.92 A, T
on

=298.5 µs, τ = 85.5 %, Fp = 0.3 kg/cm2 respec-
tively. The results obtained for peak current and pulse on 
time can be validated by comparing it with results obtained 
in similar work presented in [13], and [15]. The conformation 
experiment was conducted with the closet value setting 
available in EDM machine ( I

P
 = 7 A, T

on
=300 µs, τ = 85 %, Fp = 

0.3  kg/cm2). The corresponding MRR was obtained as 
highest value 7.037  (mm3/min), TWR = 3.265  (mm3/min), 
Ra = 0.855 µm and circularity = 7.59. These values are the 
optimal responses in the conducted experiments.

The machined surface of experiment numbers 22 
( I
P
 = 5 A, T

on
 = 300 µs, τ = 80%, fP=0.3 kg/cm2) and 23 

( IP = 5A, Ton = 100μs , τ = 90% , fP=0.3 kg/cm2) was ana-
lyzed under a scanning electron microscope at 1000 
magnification (Model JEOL JSM-6480LV). Figure 10 shows 
pores and micro-cracks for experiment number 22 and 
Fig. 11 shows a similar observation for experiment num-
ber 23. It can be observed that a few larger pores and small 
number of micro-cracks are present in Fig. 10. In Fig. 11, 
more number of small pores and more number of micro 
cracks are present. The increase of pulse-on-time establish 
more heat between tool and workpiece. The higher ther-
mal gradient may give rise to high residual stress causing 
more pores and larger cracks.

Table 5  Adjusted membership value

Experi-
ment no

Membership 
value of R

1

Membership 
value of R

2

Membership 
value of R

3

Member-
ship value 
of R

4

1 0.0594 0.1072 0.0022 0.8284

2 0.0126 0.0152 0.9915 0.0088

3 0.1203 0.1887 0.0006 0.6834

4 0.7582 0.1348 0.0040 0.0582

5 0.3447 0.4495 0.0008 0.1979

6 0.1531 0.7974 0.0010 0.0369

7 0.0760 0.8642 0.0026 0.0098

8 0.6454 0.3103 0.0014 0.0459

9 0.0693 0.1420 0.0006 0.7785

10 0.6088 0.3470 0.0093 0.0512

11 0.0535 0.0987 0.0074 0.8342

12 0.7698 0.1928 0.0045 0.0251

13 0.0969 0.3035 0.0094 0.5777

14 0.4513 0.4252 0.0018 0.1301

15 0.1445 0.3574 0.0025 0.5084

16 0.7130 0.2097 0.0013 0.1028

17 0.0532 0.1884 0.0091 0.7469

18 0.7651 0.1434 0.0084 0.0331

19 0.0722 0.1206 0.0015 0.8389

20 0.7971 0.0064 0.0030 0.0864

21 0.0700 0.6341 0.0009 0.3346

22 0.6089 0.1789 0.0011 0.3122

23 0.1831 0.4561 0.0007 0.2811

24 0.6752 0.1525 0.0019 0.1856

25 0.1223 0.8325 0.0016 0.0185

26 0.1072 0.8507 0.0068 0.0112

27 0.1228 0.8510 0.0171 0.0074

Fig. 6  Membership function 
plot
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6  Conclusions

EDM is widely used by researchers as well as manufactur-
ers for different objectives such as quality manufactur-
ing. Experiments were modeled using RSM design and 
the four performance characteristics were estimated. 
The multiple responses were converted into a single 
equivalent response (MPCI) via a neuro-fuzzy approach. 
A regression model was developed on MPCI and PSO 
was used to find the optimal setting. The best set of 
parameters were achieved at Ip = 6.92 A, Ton = 298.5 μs, 
τ = 85.5%, Fp = 0.3 kg/cm2 for combined optimization of 
four responses. The confirmation experiment was con-
ducted with the closet value setting available in EDM 
machine (Ip = 7 A, Ton = 300 µs, τ = 85%,Fp = 0.3 kg/cm2). 
The input current has a more significant effect on the EDM 
responses. The increase of pulse-on-time developed larger 
pores and micro-cracks on workpiece surface (from SEM 
image). The combined approach of design of experiment 
with neuro-fuzzy system and PSO technique holds good 
for solving multiple response problem. This methodology, 

Table 6  Multi-response Performance Characteristic Index (MPCI)

Sl. no Ip (A) Ton (µs) τ (%) Fp (kg/cm2) MPCI

1 − 1 − 1 0 0 0.42805

2 1 − 1 0 0 0.89407

3 − 1 1 0 0 0.63183

4 1 1 0 0 0.84881

5 0 0 − 1 − 1 0.60064

6 0 0 1 − 1 0.41836

7 0 0 − 1 1 0.36551

8 0 0 1 1 0.55886

9 − 1 0 0 − 1 0.47000

10 1 0 0 − 1 0.66304

11 − 1 0 0 1 0.21636

12 1 0 0 1 0.73710

13 0 − 1 − 1 0 0.32799

14 0 1 − 1 0 0.58683

15 0 − 1 1 0 0.41793

16 0 1 1 0 0.68113

17 − 1 0 − 1 0 0.17097

18 1 0 − 1 0 0.73192

19 − 1 0 1 0 0.34790

20 1 0 1 0 0.79249

21 0 − 1 0 − 1 0.48420

22 0 1 0 − 1 0.70094

23 0 − 1 0 1 0.32184

24 0 1 0 1 0.66965

25 0 0 0 0 0.41702

26 0 0 0 0 0.38558

27 0 0 0 0 0.40928

Table 7  ANOVA for MPCI

Term Coef SE coef T P

Constant 0.404 0.047 8.611 0.000

I
P

0.200 0.023 8.535 0.000

T
on

0.104 0.023 4.423 0.001

τ 0.036 0.023 1.538 0.150

Fp − 0.039 0.023 − 1.662 0.122

I
P
× I

P
0.120 0.035 3.415 0.005

T
on

× T
on

0.128 0.035 3.631 0.003

τ × τ 0.004 0.035 0.104 0.919

Fp × Fp 0.029 0.035 0.836 0.420

I
P
× T

on
− 0.062 0.041 − 1.532 0.151

I
P
× τ − 0.029 0.041 − 0.716 0.488

IP × Fp 0.082 0.041 2.016 0.067

T
on

× τ 0.001 0.041 0.027 0.979

Ton × Fp 0.033 0.041 0.807 0.436

τ × Fp 0.094 0.041 2.311 0.039

R2 = 91.72%
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being simple and robust, can be applied in other situa-
tions where multiple conflicting objectives are desired to 
be optimized simultaneously.
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