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Texture plays an important role in the low-level image analysis and understanding in the field of com-
puter vision. Texture based image enhancement is very important in many applications. In order to attain
texture enhancement in images, a modified version of the Grunwald-Letnikov (G-L) definition based frac-
tional differential operator is proposed in this paper. Considering the G-L based fractional differential
operator’s basic definition and implementation, a filter is devised and its applicability for texture
enhancement is analyzed. Subsequently, the filter is modified by considering the auto-correlation effect
between pixels in a neighborhood. Experiments are carried out on a number of standard texture-rich
images and it is proved that the modified filter enhances the image contrast by nonlinearly enhancing
the image textural features. In addition, the texture enhancement is quantitatively proven by a few
Gray Level Co-occurrence Matrix (GLCM) measures, such as contrast, correlation, energy and homogene-
ity. Their % of Improvement is discussed in detail and the substantial improvement attained by the
modified G-L FD operator over the basic G-L FD operator is well proved.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In most of the images, texture is considered to be the visual
impression of coarseness or smoothness caused by the variability
or uniformity of the image tone. Thus, the contribution of texture
for low level image analysis is considered to be significant [1,2].
In general, image analysis that is accomplished by characterizing
and representing image regions according to their texture content
is called texture analysis. An image texture is analyzed to quantify
instinctive properties, such as smoothness or coarseness. It is
described to be a function of the spatial variation in pixel intensity
levels.

Texture-based analysis of images is useful in a variety of appli-
cations and has been a subject of deep study by many researchers.
In addition, the textural properties of an image are expected to
expedite valuable information for analysis in domains such as
remote sensing and medical imaging [3,4]. However, texture-
based image analysis has many challenges to be addressed.
Primarily, the quality of the image needs to be improved to avoid
the misinterpretation of images by the human visual system.

Usually, the quality of an image is improved through successive
applications of image enhancement techniques [5–9], such as con-
trast stretching, histogram manipulation and unsharp masking.
Histogram equalization-based image enhancement methods [8,9]
are appropriate for images that have histograms with only single
peak. Other enhancement methods [5–7] have restrictions for
improving image textural features. In addition, these techniques
provide major contributions for improving the statistical features
such as mean and standard deviation of an image but only provide
small improvements for textural features. Thus, a specific image
enhancement technique is required as a pre-processing step that
improves the textural features in images.

By visual interpretation, it is noticed that texture features are
sharp details in images and it is inferred that differential operators
may be considered for highlighting the textural information in
images. Basically, first and second order differential operators such
as gradient and Laplacian operators are used to highlight the edges
and boundaries in images. It was also proved in the recent litera-
ture that fractional differential operators [10–12] are found to be
more appropriate for image textural features than integral differ-
ential operators. Thus, fractional differential operators are consid-
ered for texture enhancement in images.
exture
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FD operators used in many image processing applications are
devised in the form of filters to be operated on smaller neighbor-
hoods in images; however, these filters do not include auto-
correlation features that exist between pixels in a neighborhood.
The detection of texture features using autocorrelation function
is already proved in [13,14]. The existing texture analysis measures
are thoroughly reviewed in [15], among which autocorrelation fea-
ture is formulated as one of the noteworthy texture measures.
Hence, an attempt is made in this work to improve the G-L frac-
tional differential filter by incorporating auto-correlation effect
between neighbouring pixels.

The efficacy of the proposed FD operator needs to be proved
using a texture characterization procedure. For texture characteri-
zation, various texture analysis approaches exist in the literature
[1,2,16–19,3,4], where the spatial localities and rate of occurrences
of intensity level differences pertaining to the image texture fea-
tures are classified and categorized. Most researchers consider
the process of texture analysis to be a process of texture segmen-
tation [16,17], where the different regions of an image are treated
as different texture classes, leading to a multi-texture segmenta-
tion problem. On comparing with approaches such as wavelet
domain, Fourier domain, and statistical and structural methodolo-
gies of texture analysis, Gray-Level Co-occurrence Matrix (GLCM)
method is found to be better for quantifying the image textural fea-
tures [1]. Hence, the performance of the proposed texture enhance-
ment filter is demonstrated using GLCM method. Therefore,
modified G-L fractional differential operator is proposed for texture
enhancement in images and the enhancement is quantified using
the GLCMmeasures contrast, correlation, energy and homogeneity.

The remainder of the paper is organized as follows: The review
of the related work is detailed in Section 2. The essential hypothet-
ical background of the G-L definition of fractional differential is
reviewed in Section 3 and the modified fractional differential filter
is built in Section 4. Experimental results of the proposed method
on test images are discussed in Section 5. The work is concluded in
Section 6.
2. Related work

The aim of this section is to recollect the hypothetical back-
ground regarding the role of texture enhancement in image
processing and its applications. Especially it concentrates on frac-
tional differentiation and its progresses for texture enhancement.
Some of the texture enhancement based applications are discussed
in [20–25], where it is shown that texture enhancement plays a
major role in the field of image processing and texture enhance-
ment is an essential issue that needs to be considered in applica-
tions like remote sensing, medical imaging, image denoising,
image interpretation, defect detection and image restoration.

In an application of segmenting fruit orchards from forests, an
enhancing filter is applied to improve the spectral variation i.e.
texture of these two bands prior to segmentation process [20].
Haar wavelet approximation coefficients are proposed to extract
texture features in medical images in order to segment the
prostate regions in a multi-resolution framework [21]. A texture
enhancement methodology is suggested using Non local means
(NL-means) algorithm for fabric defect detection [23]. In an image
enhancement method based on histogram equalization, the textu-
ral features are employed in the contrast enhancement process in
addition to the intensity information [25].

Since, FD operators are proposed for texture enhancement in
this work, the evolution of fractional differentiation for textural
features is discussed. The application of a fractional differential
operator is initiated for edge identification using fractional calculus
theory [26]. Attempts were made to map integer order derivatives
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to fractional derivatives [10,11] that could be considered for tex-
ture enhancement in images. Cauchy integral derivatives are gen-
eralized to Riesz potential operators through fractional centred
derivatives [10]. Riemann-Liouville’s and Marchaud’s derivatives
are closely bound to fractional integrals over semi-infinite intervals
[11] by the method of interpolation. Six fractional differential
operators are devised based on two commonly used definitions
of fractional differential, known as Grunwald-Letnikov(G-L) and
Riemann-Liouville(R-L) for multiscale texture enhancement [12].

It has been proven by many researchers that the fractional dif-
ferential operator is a robust operator for non-linearly enhancing
image textural features and is useful in many applications
[22,24,27–29]. Fractional differential based methodologies are pro-
posed for enhancing textural details of remote sensing images [22]
and for improving the registration of MR images [24]. The capabil-
ity of one of the texture enhancing FD operators i.e. R-L FD operator
for contrast enhancement is deliberated in [27]. A texture enhance-
ment technique is introduced for medical images by using FD
masks based on Srivastava-Owa fractional operators [28]. A set of
fractional partial differential equation based multiscale denoising
models are proposed for textured images [29].

In the recent literature, some improvements to the basic FD
operators are made. Two adaptive FD operators based on G-L
definition are proposed [30,31] to handle complex textures charac-
terized by irregular patterns in images. In [30], G-L FD operator is
refined with an adaptive fractional order to enhance regions that
are both self-similar and non-regular in nature. In another
approach [31], the adaptive fractional order is suggested to be
obtained according to the dynamic gradient feature of the image.
Variable Order Fractional Centred Difference (VOFCE) scheme
[32] based on the second order Riesz FD operator is suggested to
have dynamic adjustment for fractional order rather than having
a constant value.

The improvements proposed for G-L FD operator in [30,31] are
based on making the G-L FD order adaptive and changes made for
second order Riesz FD operator [32] is about dynamically adjusting
FD order; Whereas, The modification to the G-L FD operator made
in this paper proposes to change the filter coefficients by consider-
ing the autocorrelation effect that exists between pixels in a
neighbourhood. The autocorrelation feature is considered and
included in the filter by distributing the weightage coefficient
corresponding to one pixel in the basic G-L FD filter to all pixels
having the same distance with the centre pixel in the modified
filter. Thus, in case of choosing FD order in an adaptive manner
or dynamically, the improvement is levied by fixing the fractional
order to a particular value based on some of the properties specific
to a pixel or an image region. The basic filter co-efficients do not
change and remain the same. In the proposed solution, the
improvement is imposed from within the operator by changing
the filter co-efficients.

Especially, in the adaptive modifications that are suggested to
the G-L fractional differential filter [30,31], the FD order is fixed
to a particular value needing separate calculations that consider
correlation between pixels and omit noise. For out proposed filter,
the modifications are made by distributing the weightage coeffi-
cient of one pixel to many pixels and thereby considering correla-
tion between pixels and omitting noise without the need for
separate calculations.

3. Hypothetical analysis of fractional differential filter based on
the G-L definition

According to the G-L definition of fractional differential, the
differential operator is obtained in the integral differentiation
definition by converting from integer to fraction [33,34]. Consider-
ing that 8v 2 R (R-a set of real numbers, ½v � its integral part), the
nal differential operator modified using auto-correlation function: Texture
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one-dimensional signal f ðxÞ 2 ½a; x�; a < x; a 2 R; x 2 R, has an m
(m 2 Z, Z a set of integers) - order analogous differentiation.
Similarly, the v-order differential is given by

a
GDv

x f ðxÞ ¼ limh!0f
ðvÞ
h ðxÞ ¼ limh!0h

�vXn�1

m¼0

�v
m

� �
f ðx�mhÞ ð1Þ

where

�v
m

� �
¼ ð�vÞð�v þ 1Þ � � � ð�v þm� 1Þ

m!
ð2Þ

From Eqs. (1) and (2), it is derived that

Dv
x ¼

Xn�1

m¼0

Cðm� vÞ
Cðmþ 1Þ f ðx�mhÞ ð3Þ

where h is the interval of one-dimensional signal being
differentiated.

Next, the mathematical implementation of fractional differen-
tial filter for digital images is considered. The pixel values in digital
images are finite and discrete and the distance between adjacent
pixels is always one pixel. Therefore, the value of h must be 1 for
fractional differential filter to be applied to images. The fractional
differentiation of a 1- dimensional signal with h ¼ 1 is represented
as follows:

dv f ðxÞ
dxv

� f ðxÞ þ ð�vÞf ðx� 1Þ þ ð�vÞð�v þ 1Þ
2

f ðx� 2Þ

þ ð�vÞð�v þ 1Þð�v þ 2Þ
6

f ðx� 3Þ þ � � �

þ Cðn� vÞ
Cð�vÞCðnþ 1Þ f ðx� nÞ ð4Þ

From Eq. (4), it is found that the first coefficient is a constant
and that the remaining n� 1 coefficients are nonzero. The coeffi-
cients other than the first one are functions on the fractional order
v. It is also observed from mathematics that fractional differential
has the following properties:

i. At smooth pixel locations of images where the pixel values
do not abruptly change or do not change at all, the fractional
differential value varies from the highest at a particular
point to zero slowly. In contrast to this, the corresponding
value of integer differential is zero. Hence, the fractional dif-
ferential value of a constant is not zero, which is not true for
integer differential value.

ii. At the origin stage of a slope of pixel values, the fractional
differential value is not zero as is with integer differential.

iii. Along the slope of gradual changes in the pixel values, the
fractional differential is neither zero nor constant, whereas
its integer differential is a constant.

Thus, it is evident that the sum of the coefficients in Eq. (4) is
not zero, which is a noticeable difference between integral and
fractional differentiation. In common, fractional differential can
improve high-frequency texture features as well as maintain
low-frequency contour information in images.

4. The modified design for G-L fractional differential filter

The modified G-L fractional differential operator is devised as a
convolution filter as shown in this section. Essentially, a convolu-
tion filter is applied to all pixels in an image on a raster-scan fash-
ion. It is obtained from the following expression

gðx; yÞ ¼
Xa

s¼�a

Xb

t¼�b

wðs; tÞf ðxþ s; yþ tÞ ð5Þ
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where f ðx; yÞ is a pixel value in the input image and wðs; tÞ is a filter
coefficient. The filter is derived to be an N � N matrix by taking into
account the gradient direction. The filter has N layers and it has 8
different directions: 0; p8 ;

p
4 ;

3p
8 ; p2 ;

5p
8 ; 3p4 ; 7p8 .

In order to have the numerical implementation in digital image
processing, the 3� 3 covering templates of the fractional differen-
tial operator are devised below. Considering Eq. (4), the partial
fractional differential of f ðx; yÞ w.r.t. x is given as:

dv f ðx; yÞ
dxv

� f ðx; yÞ þ ð�vÞf ðx� 1; yÞ þ ð�vÞð�v þ 1Þ
2

f ðx� 2; yÞ ð6Þ

and the partial fractional differential of f ðx; yÞ w.r.t. y is given as:

dv f ðx; yÞ
dyv

� f ðx; yÞ þ ð�vÞf ðx; y� 1Þ þ ð�vÞð�v þ 1Þ
2

f ðx; y� 2Þ ð7Þ

The fractional differential covering templates on x and y coordi-
nates are devised from Eqs. (6) and (7) and shown as follows:

Consequently, an attempt is made to modify the G-L fractional
differential covering templates in order to improve the texture
enhancement process. It is done by considering the fact that a huge
amount of autocorrelation exists between pixels in a neighbour-
hood. Spatial autocorrelation signifies the dependency between
values of a variable in neighboring locations [35]. It also represents
a systematic pattern in values of a variable across the locations due
to underlying common factors. This corresponds to texture fea-
tures as they are repetitive patterns in images [14]. Hence, auto-
correlation feature is found suitable to be used with FD operators
to improve the process of texture enhancement. Usually, autocor-
relation feature is measured by a function as the difference
between an image f ðx; yÞ and the image shifted with a distance
vector f ðxþ dx; yþ dyÞ. As mentioned in [15], it can also be derived
as a coefficient ACeff and given in Eq. (8).

ACeff ¼
MN

PM�dx
x¼1

PN�dy
y¼1 f ðx; yÞf ðxþ dx; yþ dyÞ

ðM � dxÞðN � dyÞPM
x¼1

PN
y¼1f

2ðx; yÞ
ð8Þ

whereM � N is the size of the input image considered and displace-
ment in the x; y directions is denoted by dx and dy respectively.
Since the texture primitives are periodic, the coefficient represent-
ing autocorrelation function increases or decreases periodically
with dx and dy.

The improvisation of the G-L FD operator is attained based on
the fact that the gray level of a pixel is not independent of its
neighbours. The dependency of a pixel with its neighbor pixels is
determined by the spatial autocorrelation function given in Eq.
(8). The function has a value of 1, if only one pixel is considered,
because a pixel is totally correlated with itself. It is also found to
be true as and when dx ¼ dy ¼ 0 is substituted in Eq. (8). The value
of the function decreases as the distance between two pixels
increases, either horizontally or vertically. This behavior is incor-
porated into the G-L based fractional differential covering tem-
plates as follows:

In the G-L Fractional Differential filters shown above, the centre
pixel of the 3� 3 image region is assumed to be located in the third
row, second column on x direction and it is located in the third col-
umn, second row on y direction. It is noticed in both of the 3� 3
regions that there are 5 pixels on both x or y directions having
one pixel displacement from the centre pixel and 3 pixels having
two pixels displacement from the centre pixel. Out of 5 pixels hav-
ing one pixel displacement from the center pixel, only 1 pixel is
assigned with a coefficient of �v and the remaining 4 pixels are
assigned with a coefficient of 0 (see Table 1).

But, according to the autocorrelation function, all these 5 pixels
are equally responsible for deciding the value of the centre pixel as
they are located at the same distance from the centre pixel. Thus,
nal differential operator modified using auto-correlation function: Texture
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Table 2
Demonstrating autocorrelation in G-L FD filters.

Table 3
Modified G-L fractional differential filters.

Table 1
G-L fractional differential filters.
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the weightage coefficient of these pixels must be made non-zero
and equal. The weightage coefficient of v is equally shared among
the 5 pixels by making their coefficients to be �v=5 in order to
retain the proportion by weightage coefficient of �v in Eqs. (6)
and (7). This also facilitates to limit the intensity value of a pixel
to be in the range ½0� 255� after applying the proposed FD opera-
tor on images. Similarly, the coefficient of ðv2 � vÞ=2 assigned to
one pixel in Fig. 6(a) and (b) is equally shared among the 3 pixels
having an equal displacement with the center pixel and it is made
to be ðv2 � vÞ=6. The modifications in the covering templates on x
direction are demonstrated in Table 2.

The modified covering templates on x and y coordinates are
presented in Table 3.

The result of adding all of the nonzero coefficients is not zero
in the case of the fractional differential operator. Hence, constant
or less varying pixel value in images has a non-zero response.
Thus, the fractional differential operator non-linearly sustains
texture details and facilitates texture enhancement. The mask
discussed above is implemented on texture-rich images, and
textural details are highlighted. To attain texture improvement,
the input image is added to the fractional differential operated
image pixel-by-pixel.
5. Experiments and analysis

The applicability and efficiency of the proposed fractional dif-
ferential filter are verified by using test images from Brodatz data-
base [36], Outex database [37] and the database of aerial images
[38] and medical images [39]. The outex and Brodatz database con-
tain thousands of grayscale and color texture images and there are
38 aerial images and manymedical images in the database of aerial
and medical images respectively. The proposed texture-enhancing
filter is applied over more than 100 images from these databases
and the results are encouraging. For demonstration, the results
for 1 grayscale image from outex database, 1 grayscale and 2 color
images from brodatz database are presented and analyzed. In
addition, the texture-enhancing capability of the proposed G-L
Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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FD operator is analyzed based on a texture characterization
approach using GLCM method.
5.1. Selection of fractional order for the proposed method

Fractional differential filter basically imitates edge detection
filter constructed with either v ¼ 1 (first order derivatives) or
v ¼ 2 (second order derivatives). For FD operator, the value of
v, the fractional order ranges from 0 to 2 in intervals of fractional
values. It is already proven in [12] that the optimum value of v
with the basic G-L FD operator is between 0 and 1. Thus, the
convention is presumed to be continued for the modified FD
operator. The modified G-L FD operator is implemented on vari-
ous textured images and it is found that the degree of texture
enhancement can be controlled by the order ranging from 0 to
1 in intervals of fractional values. Thus, when the modified G-L
fractional differential filter is applied to texture enhancement in
images, the optimum value of the parameter v should be chosen
carefully.

The ultimate aim of the modified fractional differential operator
is to enhance textural feature in images in an improved manner.
The values for the fractional order should be chosen such that,
the texture-enhancing filter must satisfy the following standards:

i. It should highlight textural features.
ii. It should preserve the high correlation between pixels while

omitting the noise components.
iii. It should increase the local contrast in the images.

It is well explained in Section 4, how the modified G-L FD oper-
ator is able to maintain the correlation between pixel values while
enhancing the texture features as well as omitting the noise
components.

With respect to finding the appropriate value for v, the pro-
posed filter is applied to a set of images by varying the value of
the fractional order v between 0 and 1, with an increment of
0.05. The results are analyzed to determine which value is satisfy-
ing the above standards. When such a trial is made by visual
inspection on around 50 textured images, acceptable results are
generated with v ranging from 0.5 to 0.7. In this paper, the frac-
tional order chosen is demonstrated as the optimal value for two
real time applications i.e. remote sensing and medical imaging.
The analysis of how to find the optimum value for v by studying
GLCM measures is given in Section 5.4.
5.2. Performance analysis using GLCM measures

In order to prove the effectiveness of the modified G-L fractional
differential filter by quantitative measurement, Gray-Level
Co-occurrence Matrix (GLCM) approach is used. The GLCM is an
arrangement in matrix form that shows the different combinations
of pixel values in an image. With GLCM, the relationship between
two pixels is well exhibited by spatially relating them in different
directions with regard to the distance between them. Thus, GLCM
is described to be a 2-dimensional histogram of values for pixel
pairs that are separated with a particular spatial relationship. Dif-
ferent GLCMs can be formed by changing distance between the
pixels (preferably equal to 1) in a pair and at different rotation off-
sets such as 0�, 45�, 90�, 135� and so on. The computation of GLCM
matrices is explained with an example given in Fig. 1. In Fig. 1(b),
ði; jÞ signifies the frequency of occurrences of the pixel pair i; j with
a particular distance and a specific rotation angle and is repre-
sented as glcði; jÞ. The GLCM of the sample image with the distance
of 1 and at two rotation angles 0� and 45� are shown in Fig. 1(d)
and (e).
nal differential operator modified using auto-correlation function: Texture
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Table 4
GLCM measures for texture analysis.

Measure Description Formula

Contrast The local variations between the
reference and neighbour pixels in
the GLCM are measured

Range: [0 to ðsizeðGLCMÞ � 1ÞÞ2] P
i;j ji� jj2glcði; jÞ

Correlation The amount of linear-dependencies
between values of reference and
neighbour pixel over an image is
measured
Range: [�1 to þ1] P

i
P

j
ði�liÞðj�ljÞglcði;jÞ

rirj

Energy The number of repeated pairs and
thus textural uniformity of the
image is measured
Range: [0 to 1] P

i;jglcði; jÞ2
Homogeneity The closeness of the reference pixel

value and its neighbor is measured
over the image
Range: [0 to 1] �P

i;jglcði; jÞlog2glcði; jÞ

Table 5
Parameters used in GLCM measures.

Parameter Description Range of Values

i Reference pixel value Minimum and maximum pixel values
in an image

j Neighbour pixel value Minimum and maximum pixel values
in an image

glcði; jÞ An entry in GLCM 0 and the maximum number of
occurrences of the pixel pair i and j

lj;lj Means of GLCM w.r.t. i
and j

Depending on GLCM entries

rj;rj Standard deviations of
GLCM w.r.t. i and j

Depending on GLCM entries

Fig. 1. Computing GLCM for a sample image.
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In GLCM approach, texture is defined by the statistical relation-
ship between two pixels, namely the reference and neighbor pix-
els. Consequently, all of the pixels in the image take the role of a
Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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reference pixel in turn. The texture measures contrast, correlation,
energy and homogeneity that are derived from the GLCM are
statistic in nature and most frequently used in the literature [1].
Therefore, these measures are used for justifying the texture
enhancement performance of the proposed FD operator. The four
measures are listed in Table 4 with their description and formula.

The parameters used for calculating the above measures are
listed in Table 5 with their description and range of values.

Thus, for the quantitative evaluation with GLCM approach, an
offset matrix is created at 4 different rotation offsets i.e. 0�, 45�,
90�, 135�. The GLCM is generated from the original image, G-L FD
operated images and modified G-L FD operated images. Then, from
the generated GLCM, four statistical texture measures contrast,
correlation, energy and homogeneity are calculated. This process
is repeated for different values of fractional order ranging from
v ¼ 0 to v ¼ 1.

5.3. Evaluation by visual analysis

Figs. 2–5 show the results obtained from histogram equaliza-
tion [8,9], basic G-L fractional differential operator [11] and the
modified G-L fractional differential operator. By observing the
results, it is noted that the Histogram Equalization method con-
centrates on enhancing the image contrast excessively, but the
texture enhancement is less likely to be concentrated. The basic
G-L FD operator enhances the image textural features. However,
this method does not take into consideration the high degree of
autocorrelation that exists between pixels, and thus usually
ignore local texture features. Thus, in spite of providing produc-
tivity in overall texture enhancement, this method is not able to
concentrate on enhancing local texture patterns and preserve
minute features like small edges. The modified G-L fractional
differential operator results in better enhancement of textural
features, enhancing local texture patterns and also preserves
small edges in images leading to provide more encouraging
results.
nal differential operator modified using auto-correlation function: Texture
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(a) Original Image (b) Histogram Equalization

(c) GL-FD operator (d) Modified GL-FD
         operator

Fig. 5. Sample Image 4 - Brodatz album (color).

(a) Original Image (b) Histogram Equalization

(c) GL-FD operator (d) Modified GL-FD
        operator

Fig. 3. Sample Image 2 - Outex album (grayscale).

(a) Original Image (b) Histogram Equalization

(c) GL-FD operator (d) Modified GL-FD operator

Fig. 2. Sample Image 1 - Brodataz album (grayscale).

(a) Original Image

(c) GL-FD operator

(b) Histogram Equalization

(d) Modified GL-FD
        operator

Fig. 4. Sample Image 3 - Brodatz album (color).
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5.4. Evaluation by GLCM measures

The GLCM measures contrast, correlation, energy and homo-
geneity are computed for the four images presented in Figs. 2–5
in order to justify the improvisation attained by the modified G-L
FD operator over the basic G-L FD operator.
5.4.1. Contrast
Contrast is measured as sum of variance squares multiplied by

the spatial frequency, reflecting the variation between the
Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
enhancement in images. Ain Shams Eng J (2017), http://dx.doi.org/10.1016/j.a
reference and neighbor pixel over an entire image. It is understood
that the similar pixel values result in low contrast and hence
produces a weak dissemination of texture features. Applying FD
operators helps to increase contrast in images and thereby increas-
ing texture strength.

The contrast measure is evaluated as per the formula given in
Table 4 with the Percentage of Contrast Improvement (%CImp)
defined as follows:

%CImp ¼ ðCFD � CIÞ=CI � 100 ð9Þ
nal differential operator modified using auto-correlation function: Texture
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where CFD is the contrast of the FD operated image and CI is the con-
trast of the input image.

As an increase in contrast signifies the increased texture
strength, positive values of %CImp indicate the improvement. The
contrast measure calculated for the four images (Figs. 2–5) with
the %CImp obtained by the basic G-L FD operator (G-L FD op.) and
by the modified G-L FD operator (M G-L FD op.) is presented in
Tables 6–9.

Referring Tables 6–9, it is observed that the modified G-L FD
operator provides a more significant increase in %CImp over the
basic G-L FD operator and thereby is able to increase the depth
of textural information in images better than the basic G-L FD
operator. It is also noted that the basic G-L FD operator is able to
increase the contrast when v is increased from 0 to 0.5 beyond
Table 6
Sample Image 1 - contrast.

Table 7
Sample Image 2 - contrast.

Table 8
Sample Image 3 - contrast.

Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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which the contrast decreases resulting in loss of textural informa-
tion. With the modified G-L FD operator, the contrast increases
considerably when v is increased from 0 to 1. Thus, the range of
values of v, for which texture enhancement is attained, is also
increased by the proposed FD operator.
5.4.2. Correlation
Correlation is a measure of how correlated a reference pixel

to its neighbor over an image. Higher values of correlation
imply a linear relationship between the gray levels of pixel
pairs. Hence, a drop in this measure indicates better clarity of
texture details. Correlation is highly uncorrelated to contrast,
as the likelihood values of two pixels is completely independent
from contrast.
nal differential operator modified using auto-correlation function: Texture
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Table 9
Sample Image 4 - contrast.

8 S. Hemalatha, S. Margret Anouncia / Ain Shams Engineering Journal xxx (2017) xxx–xxx
Correlation is measured by the formula given in Table 4. The
Percentage of correlation Improvement (%CorImp) is defined as
follows:

%CorImp ¼ ðCorFD � CorIÞ=CorI � 100 ð10Þ

where CorFD is the correlation of the FD operated image and CorI is
the correlation of the input image.

With diminishing values of correlation, texture details are more
clearly visible and thus, negative values of %CorImp indicate texture
Table 10
Sample Image 1 - correlation.

Table 11
Sample Image 2 - correlation.

Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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enhancement. The correlation is evaluated for four texture images
in Figs. 2–5 alongwith the %CorImp and are shown in Tables 10–13.

It is noticed from Tables 10–13 that the correlation decreases
with increasing fractional differential order indicating better clar-
ity of texture details. Also, the %CorImp provided by the modified
G-L FD operator is more than that provided by the basic G-L FD
operator. When v reaches closer to 1;%CorImp achieved with G-L
FD operator is almost ignorable when compared with that achieved
by the modified operator. Hence, the process of improving texture
enhancement is proved.
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Table 12
Sample Image 3 - correlation.

Table 13
Sample Image 4 - correlation.
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5.4.3. Energy
The GLCM measure energy reflects textural uniformity. Thus,

a decrease in energy implies more irregularity and inhomogene-
ity in the change of texture and texture enhancement is
justified.

Energy is measured with the formula in Table 4. The Percentage
of Energy Improvement (%EImp) is defined as follows:

%EImp ¼ ðEFD � EIÞ=EI � 100 ð11Þ
where EFD is the energy of the FD operated image and EI is the
energy of the input image.

Since, texture enhancement is justified by a decrease in energy,
negative values of %EImp signify texture enhancement. The energy
Table 14
Sample Image 1 - energy.

Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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measure computed together with %EImp for the images in
Figs. 2–5 are presented in Tables 14–17.

Tables 14–17 justify the enhancement attained by the modified
FD operator in terms of energy and %EImp, since the energy
decreases more swiftly with the modified G-L FD operator than
with the basic G-L FD operator.

5.4.4. Homogeneity
The closeness of gray levels in spatial distribution is measured

over the image as homogeneity. Higher the values of homogeneity,
more close are the pixel values that identify uniform image
regions. Therefore, a fall with this measure reveals texture
enhancement.
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Table 15
Sample Image 2 - energy.

Table 16
Sample Image 3 - energy.

Table 17
Sample Image 4 - energy.
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Homogeneity is measured with the formula in Table 4. The Per-
centage of Homogeneity Improvement (%HImp) is defined as
follows:

%HImp ¼ ðHFD � HIÞ=EI � 100 ð12Þ
where HFD is the homogeneity of the FD operated image and HI is
the homogeneity of the input image. Negative values of %HImp

defend improved textures in images.
Homogeneity is measured for the images in Figs. 2–5 and are

displayed in Tables 18–21.
From the summary presented in Tables 18–21, it is proved

that the modified G-L FD operator provides a substantial
improvement in terms of %HImp over the basic G-L FD operator.
It is also noted that the homogeneity decreases with the
Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
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basic G-L FD operator when v is increased from 0 to a certain
value around 0.5–0.6, after which, the homogeneity starts
increasing. For the modified G-L FD operator, the range of val-
ues of v, for which homogeneity decreases gradually is 0–0.8.
Therefore, the improvisation of the texture enhancing process
is justified.

Considering these measures for the four images in Figs. 2–5, it is
found that the maximum % of improvement that could be obtained
by the basic G-L FD operator and the modified G-L FD operator in
all the measures are approximated in Table 22.

Thus, it justified that the modified G-L FD operator is capable of
providing outstanding performance when compared with the basic
G-L FD operator. It is also found that the contrast measure is
mostly improved by the proposed operator.
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Table 18
Sample Image 1 - homogeneity.

Table 19
Sample Image 2 - homogeneity.

Table 20
Sample Image 3 - homogeneity.

Table 21
Sample Image 4 - homogeneity.
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Table 22
% of improvement - an analysis.

G-L FD op. M G-L FD op.

%CImp Around 50% More than 100%
%CorImp Around (5–6)% Around �30%
%EImp Around �30% Around �50%
%HImp Around �10% Around �20%
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5.5. Applications

5.5.1. Application in remote sensing image enhancement
Remote sensing methods are commonly used for applications

such as defending environment protection, military surveillance
and land mapping. But, there are issues like sensor limitation and
atmospheric dispersion that may produce images with inadequate
quality such as low contrast and blurring, which will be an obstacle
for successful analysis. Therefore, improving the quality of remote
sensing images is found to be significant.

Our proposed FD operator works well for enhancing remote
sensing images. Two aerial images are considered for demonstra-
tion. Our proposed solution is compared with histogram equaliza-
tion [8,9], basic G-L FD operator [12] and adaptive FD operator [30]
to justify the potential of our approach over these approaches and
the results are presented in Figs. 6 and 7. The results of adaptive FD
operator presented in Figs. 6(d) and 7(d) are taken from [30].

As shown in Fig. 6 and 7, while the overall brightness of the
images are well increased by histogram equalization [8,9], the tex-
ture details are least considered. Even though the basic G-L FD
operator [12] and the adaptive G-L FD operator [30] provide higher
efficiency in texture enhancement and better convergence rate,
these methods have deficiency in considering the complexity and
diversity of minute texture details. Therefore, these methods are
able to provide only minimal enhancement for minute texture
details. Comparing with the adaptive approach [30], the proposed
G-L FD operator considers to include autocorrelation feature in the
filter itself and thus, this method is able to enhance the minute
Fig. 6. Aerial Image 1 - texture e
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texture details throughout the image. Thus, the proposed FD oper-
ator is able to achieve around 20–30% more enhancement than the
previous approaches.

In order to show the capability of our approach in enhancing
specific regions of remote sensing images, the results of the pro-
posed filter are compared with those of basic G-L FD operator
[12] and adaptive G-L FD operator [30] in Figs. 8 and 9.

Since, the autocorrelation is not considered in the basic G-L FD
operator [12] and some pixel values are overestimated, (see Fig. 8
(b)), particular regions of the image such as the building roofs seem
extremely bright. Due to the adaptive nature of G-L FD operator
[30], the visibility of specific regions like rivers and highways
shown in Fig. 8(c) are enhanced, however, other details are less
concentrated. It is noted from Fig. 8(d) that the degree of enhance-
ment becomes higher with our proposed FD operator. It is also
observed that our proposed FD operator improves visibility evenly
in all parts the image by enhancing of minute texture details every-
where by imposing autocorrelation feature. In addition, the texture
details around the river and highway portions are more noticeable
than the other methods. Therefore, it is justified that texture is
enhanced in all parts of images by concentrating on minute texture
details throughout the image. This is not the case with adaptive FD
operators that concentrate on particular regions based on the value
chosen for FD order.

In the second aerial image shown in Fig. 9, the minute texture
details are fine discriminated even in smooth areas such as sea
waves by enhancement through our proposed solution.

5.5.2. Application in medical image enhancement
Medical images are usually characterized as low contrast

images. The process of acquiring high contrast images with the
imaging device is little slow. Particularly, in case of X-ray image
acquisition, the process needs higher X-ray dose to be given to
patients and thereby is not desirable. Thus, enhancing medical
images turns into a significant post-processing in the related
applications. Our proposed FD operator provides satisfactory
results for medical image enhancement. The enhancement result
nhancement - comparison.
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Fig. 7. Aerial Image 2 - texture enhancement - comparison.

(a) original (b) Basic G-L FD operator

(c) Adaptive FD operator (d) Modified GL-FD operator
Fig. 8. Enhancement results of aerial Image 1: three local regions highlighted in white are enlarged and placed at the right of each image.
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for chest X-ray image is compared with basic G-L FD operator [12],
adaptive FD operators [30,31] and the results are displayed in
Fig. 10. The results of adaptive FD operator presented in Fig. 10
(c) and (d) are taken from [30,31].

The basic G-L FD operator is able to provide only minimal
enhancement for textural information, whereas, the two adaptive
operators attempt to enhance the texture details by fixing the frac-
tional differential order in an adaptive manner. Comparing with
these adaptive approaches, the proposed G-L FD operator enhances
the minute texture details in the image by incorporating autocor-
relation feature in the filter itself. Thus, our proposed FD operator
Please cite this article in press as: Hemalatha S, Margret Anouncia S. G-L fractio
enhancement in images. Ain Shams Eng J (2017), http://dx.doi.org/10.1016/j.a
provides up to 20–30% more enhancement for the chest X-ray
image than the basic G-L FD operator and the two adaptive FD
operators.

The potential of the proposed G-L FD operator for enhancing the
chest X-ray image is proved by comparing the results of basic G-L
FD operator [12], two adaptive G-L FD operator [30] and the pro-
posed operator in Fig. 11. The basic G-L FD operator [12] provides
marginal enhancement in terms of textural information, however
lacks in enhancing specific regions like shoulder joint and rib cage.
With adaptive FD operators, the rib cage details are over-enhanced
as can be seen from Fig. 11(b). Although, the adaptive operators
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(a) original (b) Basic G-L FD operator

(c) Adaptive FD operator

(d) Modified GL-FD operator

Fig. 9. Enhancement results of aerial Image 2: two local regions highlighted in white are enlarged and placed at the right of each image.

Fig. 10. The X-ray image of human chest - comparison of different FD operators.
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(a) original (b) Basic G-L FD operator

(c) Adaptive FD operator (d) Modified GL-FD operator
Fig. 11. Enhancement results of the chest X-ray image: two local regions highlighted in white are enlarged and placed at the right of each image.
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efficiently enhance the shoulder joint and ribcage details, the
modified G-L FD operator produces better enhancement for these
specific regions. As well, this modified operator enhances the over-
all image by improving minute texture details due to the inclusion
of autocorrelation feature.
6. Conclusion

For texture enhancement in gray scale and colour images, the
G-L fractional differential operator is modified using the fact that
large amount of autocorrelation exists between pixels in local
neighborhoods. The filter coefficients that are zero in the basic
G-L FD filter are made non-zero by distributing the autocorrelation
feature across pixels in a neighborhood. The modified FD operator
is applied to textured images; texture enhancement is obtained
and compared with histogram equalization, basic G-L FD operator
and adaptive FD operator. The experiments by visual analysis
proved that the proposed operator is able to provide better
enhancement than the basic G-L FD filter.

As can be seen from the analysis shown in Table 22, it is con-
cluded that the modified G-L FD operator outperforms the basic
G-L FD operator. It is also noted that the rate at which these
measures attain their improvement (either increasingly or decreas-
ingly) by the increase in FD order is appreciably higher with the
modified G-L FD operator than with the basic G-L FD operator.
The optimum value fractional order v is found to lie in the range
0.5–0.7.

Our proposed solution is demonstrated in enhancing the textu-
ral details carrying vital information in different types of images
such as remote sensing images and medical images. In future, it
is planned to use this operator for pre-processing step for image
segmentation. In our proposed approach, the optimum value for
the FD order is obtained by experiments. In future, the proposed
method will be extended to make the fractional order adaptive
one.
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