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Abstract: Using the operator La
c defined by Carlson and Shaffer, we defined a new subclass of

analytic functions MLa
c(λ; ψ) defined by a subordination relation to the shell shaped function ψ(z) =

z +
√

1 + z2. We determined estimate bounds of the four coefficients of the power series expansions,
we gave upper bound for the Fekete–Szegő functional and for the Hankel determinant of order two
for f ∈ MLa

c(λ; ψ).
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1. Introduction

Let H(D) be the class of functions which are analytic in the open unit disk D := {z ∈ C : |z| < 1},
and also let A be the subset of H(D) comprising of functions

f (z) = z +
∞

∑
n=2

an zn, z ∈ D. (1)

Let fi(z) =
∞

∑
n=0

an,i zn (i = 1, 2) which are analytic in D, then the well-known Hadamard (or

convolution) product of f1 and f2 is given by

( f1 ∗ f2)(z) :=
∞

∑
n=0

an,1 an,2 zn, z ∈ D.

For two functions f , g ∈ H(D), we say that f is subordinate to g, denoted by f ≺ g, if there exists
a Schwarz function ϑ ∈ H(D) with |ϑ(z)| < 1, z ∈ D, and ϑ(0) = 0, such that f (z) = g(ϑ(z)) for all
z ∈ D. In particular, if g is univalent in D, then the following equivalence relationship holds true:

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (D) ⊂ g(D).

Let P be the well-known class of Carathéodory functions that is a set of functions φ ∈ H(D) with
the power series expansion

φ(z) = 1 + p1z + p2z2 + . . . , z ∈ D, (2)
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and such that Re φ(z) > 0 for all z ∈ D.
For the function f ∈ A of the form (1), Noonan and Thomas [1] defined q-th Hankel determinant as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣

(a1 = 1, q, n ∈ N := {1, 2, 3, . . . }) .

In particular,

H2,1( f ) =

∣∣∣∣∣
a1 a2

a2 a3

∣∣∣∣∣ = a1a3 − a2
2 = a3 − a2

2, and H2,2( f ) =

∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣ = a2a4 − a2
3.

It is well-known (see Duren [2]) that, if f is given by (1) and is univalent in D, then H2,1( f ) ≤ 1
occurs, and this result is sharp. The determinant Hq,n has also been measured by many authors.
For example, the rate of growth of Hq,n( f ) as n → ∞ for functions f ∈ A with bounded boundary
was determined. In [3], it has been shown, a fraction of two bounded analytic functions with its
Laurent series around the origin having integral coefficients, is rational. The Hankel determinant
of meromorphic functions, (see [4]), and various properties of these determinants can be found
in [5]). In 1966, the Hankel determinant of areally mean p-valent functions, univalent functions,
and starlike functions were extensively studied by Pommerenke [6]. Lately, several authors have
investigated H2,1 of innumerable subclasses of univalent and multivalent functions and, for more
details on Hankel determinants, one may refer [1,6–14]. For T ⊂ A, a problem of finding a sharp
(best possible) upper bound of

∣∣a3 − µ a2
2

∣∣ for the subclass T is generally called Fekete–Szegő problem

for the subclass T , where µ is a real or a complex number. There are some well known subclasses of
univalent functions, such that the starlike functions, convex functions, and close-to-convex functions,
for which the problem of finding sharp upper bounds for the functional

∣∣a3 − µ a2
2

∣∣ was completely
solved (see [15–18]). For the family of analytic functions R := { f ∈ A : Re f ′(z) > 0, z ∈ D},
Janteng et al. [19] have found the sharp upper bound to |H2,2( f )|. For initial work on the class R,
one may refer to the article of MacGregor [20].

The concept of shell-like domains gained importance in the recent times and it was introduced
by Sokół and Paprocki [21]. Recently, for ψ(z) = z +

√
1 + z2, Raina and Sokół [22] have widely

studied and found some coefficient inequalities for f ∈ S⋆(ψ) if it satisfies the subordination
condition that z f ′(z)/ f (z) ≺ ψ(z), and these results are further improved by Sokół and Thomas [23],
the Fekete–Szegő inequality for f ∈ C(ψ) were obtained and, in view of the Alexander result between
the class S∗(ψ) and C(ψ), the Fekete–Szegő inequality for functions in S∗(ψ) were also obtained.
The function ψ(z) := z +

√
1 + z2 maps the unit disc D onto a shell shaped region on the right half

plane, and it is analytic and univalent on D. The range ψ(D) is symmetric respecting the real axis and
ψ(z) is a function with positive real part in D, with ψ(0) = ψ′(0) = 1. Moreover, it is a starlike domain
with respect to the point ψ(0) = 1 (see [24]), such as Figure 1 shows.

Definition 1. [22] Let f ∈ A be normalized by f (0) = f ′(0)− 1 = 0 in the unit disc D. We denote by S∗(ψ)
the class of analytic functions and satisfying the condition that

z f ′(z)
f (z)

≺ z +
√

1 + z2 =: ψ(z),

where the branch of the square root is chosen to be the principal one that is ψ(0) = 1.
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Figure 1. The image of D under ψ(z) =
√

1 + z2 + z.

Now, we recall the Carlson–Shaffer operator [25] La
c : A → A defined by

La
c f (z) := Φ(a, c; z) ∗ f (z), z ∈ D, (3)

where

Φ(a, c; z) :=
∞

∑
n=0

(a)n

(c)n
zn+1 =

∞

∑
n=0

ϕn zn+1, z ∈ D,

(
a ∈ C, c ∈ C \Z−

0 , Z−
0 := {. . . ,−2,−1, 0}

)
,

is the incomplete beta function, and (t)n denotes the Pochhammer symbol (or the shifted factorial) defined
in terms of the Gamma function by

(t)n :=
Γ(t + n)

Γ(t)
=

{
t(t + 1)(t + 2) . . . (t + n − 1), if n ∈ N,
1, if n = 0.

For f ∈ A is given by (1) and by (3), one can get the Carlson and Shaffer operator

La
c f (z) := z +

∞

∑
n=1

(a)n

(c)n
an+1 zn+1 = z +

∞

∑
n=1

ϕn an+1 zn+1, z ∈ D (4)

where

ϕn =
(a)n

(c)n
, n ∈ N, (5)

and
z (La

c f (z))′ = aLa+1
c f (z)− (a − 1)La

c f (z), z ∈ D.

Remark 1. Next, we will emphasize a few special cases of the operator L(a, c), as follows:

(i) La
a f (z) = f (z);

(ii) L2
1 f (z) = z f ′(z);

(iii) L3
1 f (z) = z f ′(z) +

1
2

z2 f ′′(z);

(iv) Lm+1
1 f (z) =: Dm f (z) =

z

(1 − z)m+1 ∗ f (z), m ∈ Z, m > −1 is the well-known Ruscheweyh

derivative of f [26];

(v) L2
2−δ f (z) =: Ωδ

z f (z), 0 ≤ δ < 1 is the well-known Owa-Srivastava fractional differential
operator of f [27].

Motivated by the articles of Raina and Sokół [22], Sokół and Thomas [23], Dziok and Raina [28],
and Raina et al. [29], using the concept of subordination and the linear operator La

c , we define a
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new subclass of A denoted by MLa
c(λ; ψ). For this subclass, we obtained coefficient inequalities,

Fekete–Szegő inequality, and upper bound for the Hankel determinant |H2(2)|.
We define a new subclass MLa

c(λ; ψ) of A as below:

Definition 2. For 0 ≤ λ ≤ 1, let MLa
c(λ; ψ), with a ∈ C and c ∈ C \Z−

0 , denote the subclass of functions

f ∈ A that satisfies the subordination condition

z (La
c f (z))′

(1 − λ)La
c f (z) + λz

≺ z +
√

1 + z2 = ψ(z), (6)

where the branch of the square root is chosen to be the principal one that is ψ(0) = 1.

In the following remark, we prove that MLa
c(λ; ψ) is non-empty.

Remark 2. If we define the function f̃ : D → C by f̃ (z) = z + αz2, α ∈ C, a simple computation yields to

z
(
La

c f̃ (z)
)′

(1 − λ)La
c f̃ (z) + λz

=
1 + 2Az

1 + (1 − λ)Az
, where A :=

aα

c
.

Considering the circular transformation

Ψλ(z) :=
1 + 2Az

1 + (1 − λ)Az
, z ∈ D,

with 0 ≤ λ ≤ 1, and assuming that 0 ≤ A ≤ 1/2, we obtain that Ψλ maps the unit disc D onto the open disc

that is symmetric respecting the real axes connecting the points Ψλ(−1) and Ψλ(1).

If α =
c

4a
, then A = 1/4, and for λ = 1, λ = 0, and λ = 1/2, using the MAPLETM software we get the

next images of D by Ψλ like in the Figure 2:

(a) The images of Ψ1(eiθ) and ψ(eiθ) (b) The images of Ψ0(eiθ) and ψ(eiθ) (c) The images of Ψ1/2(eiθ) and ψ(eiθ)

Figure 2. The images of Ψλ(eiθ) and ψ(eiθ), θ ∈ [0, 2π).

These show that Ψλ(D) ⊂ ψ(D), which is Ψλ(z) ≺ ψ(z) for some values of λ ∈ [0, 1] that is f̃ ∈
MLa

c(λ; ψ), whenever α =
c

4a
, for λ = 1, λ = 0, and λ = 1/2. It follows that there exist values of the

parameters a ∈ C, c ∈ C \Z−
0 , and λ ∈ [0, 1], such that MLa

c(λ; ψ) 6= ∅.

Now, by suitably specializing the parameter λ, we define the new subclasses of MLa
c(λ; ψ) as

remarked below:
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Remark 3. (i) For λ = 0, let MLa
c(0, ψ) =: SLa

c(ψ) denote the subclass of A, the members of which are

given by (1) and satisfy the subordination condition

z (La
c f (z))′

La
c f (z)

≺ z +
√

1 + z2.

(ii) For λ = 1, let MLa
c(1, ψ) =: RLa

c(ψ) denote the subclass of A, members of which are of the form (1)
and if it satisfy the condition

(La
c f (z))′ ≺ z +

√
1 + z2.

(iii) For the special case for a = c, let ML(λ; ψ) := MLc
c(λ; ψ), members of which are given by (1) and

satisfy the subordination
z f ′(z)

(1 − λ) f (z) + λz
≺ z +

√
1 + z2.

In the all of the above subordinations, and throughout the whole paper, the branch of the square
root is chosen at the principal one, which is ψ(0) = 1, and a ∈ C, c ∈ C \Z−

0 .
Using the techniques of Libera and Zlotkiewicz [11] and Koepf [17], combined with the help of

MAPLETM software, we find Fekete–Szegő inequality and Hankel determinant for the function of the
class MLa

c(λ; ψ).

2. Preliminaries

To establish our main results, we recall the followings lemmas. The first lemma is the well-known
Carathéodory’s lemma (see also [30] Corollary 2.3):

Lemma 1. [31] If p ∈ P and given by (2), then |pk| ≤ 2, for all k ≥ 1, and the result is best possible for

φ1(z) =
1 + ρz

1 − ρz
, |ρ| = 1.

The next lemma gives us a majorant for the coefficients of the functions of the class P , and more
details may be found in [32] (Lemma 1):

Lemma 2. [33] Let φ ∈ P be given by (2). Then,

∣∣∣p2 − ν p2
1

∣∣∣ ≤ 2 max {1; |2ν − 1|} , where ν ∈ C. (7)

The result is sharp for the functions given by

φ1(z) =
1 + ρz

1 − ρz
, and φ2(z) =

1 + ρ2z2

1 − ρ2z2 , with |ρ| = 1.

Lemma 3. [32] (Lemma 1 and Remark, pp. 162–163) If φ given by (2) is a member of the class P , then

|p2 − υp2
1| ≤





−4υ + 2, if υ ≤ 0,
2, if 0 ≤ v ≤ 1,
4υ − 2, if υ ≥ 1.

(8)

When υ < 0 or υ > 1, the equality holds if and only if φ is
1 + z

1 − z
or one of its rotations. If 0 < v < 1,

then equality holds if and only if φ is
1 + z2

1 − z2 or one of its rotations. If υ = 0, the equality holds if and only if

φ3(z) =

(
1
2
+

η

2

)
1 + z

1 − z
+

(
1
2
− η

2

)
1 − z

1 + z
, 0 ≤ η ≤ 1,
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or one of its rotations. If υ = 1, the equality holds if and only if φ is the reciprocal of one of the functions such

that the equality holds in the case of υ = 0.

Although the above upper bound is sharp, when 0 < υ < 1, it can be improved as follows:

∣∣∣p2 − υp2
1

∣∣∣+ υ|p1|2 ≤ 2, if 0 < υ ≤ 1
2

, (9)

and ∣∣∣p2 − υp2
1

∣∣∣+ (1 − υ)|p1|2 ≤ 2, if
1
2
≤ υ < 1. (10)

We also need the following result:

Lemma 4. [33] Let φ ∈ P given by (2). Then,

p2 =
1
2

[
p2

1 +
(

4 − p2
1

)
x
]

, (11)

and

p3 =
1
4

[
p3

1 + 2
(

4 − p2
1

)
p1x −

(
4 − p2

1

)
p1x2 + 2

(
4 − p2

1

)
(1 − |x|2)z

]
(12)

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

3. Coefficient Bounds and Fekete–Szegő Inequality

In our first result, we will determine coefficient bounds for f ∈ MLa
c(λ; ψ), and this tends to

solve the Fekete–Szegő problem for the subclass MLa
c(λ; ψ).

Theorem 1. If f ∈ MLa
c(λ; ψ) and is of the form (1), then

|a2| ≤
∣∣∣

c

a

∣∣∣
1

1 + λ
,

|a3| ≤
∣∣∣∣
(c)2

(a)2

∣∣∣∣
1

2 + λ
max

{
1;

∣∣∣∣
λ − 3

2(1 + λ)

∣∣∣∣
}

,

|a4| ≤
∣∣∣∣
(c)3

(a)3

∣∣∣∣
1

2(3 + λ)
.

Proof. If f ∈ MLa
c(λ; ψ), from (6), it follows that there exists a function w ∈ H(D) with w(0) = 0 and

|w(z)| < 1, z ∈ D, such that

z (La
c f (z))′

(1 − λ)La
c f (z) + λz

= ψ(w(z)) = w(z) +
√

1 + w2(z), z ∈ D. (13)

Define the function φ by

φ(z) =
1 + w(z)

1 − w(z)
= 1 + p1z + p2z2 + p3z3 + . . . , z ∈ D,

which is

w(z) =
φ(z)− 1
φ(z) + 1

, z ∈ D, (14)

and, since w ∈ H(D) with w(0) = 0 and |w(z)| < 1, z ∈ D, it follows that φ ∈ P .
Substituting the function w from (14) on the right-hand side of (13) and simplifying, we get

√

1 +
(

φ(z)− 1
φ(z) + 1

)2

+
φ(z)− 1
φ(z) + 1

= 1 +
p1

2
z +

(
p2

2
− p2

1
8

)
z2 +

( p3

2
− p1 p2

4

)
z3 + . . . , z ∈ D, (15)
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and, by using (4), the left-hand side of (13) will be

z (L(a, c) f (z))′

(1 − λ)L(a, c) f (z) + λz
= 1 + (1 + λ)ϕ1a2z +

[
(2 + λ)ϕ2a3 + (λ2 − 1)ϕ2

1a2
2

]
z2

+
[
(3 + λ)ϕ3a4 + (2λ2 + λ − 3)ϕ1 ϕ2a2a3 + (λ3 − λ2 − λ + 1)ϕ3

1a3
2

]
z3 + . . . , z ∈ D, (16)

where ϕn, n ∈ N, is given by (5).
Hence, replacing (15) and (16) in (13) and comparing the coefficients of z, z2 and z3, we get

a2 =
c

a

p1

2(1 + λ)
, (17)

a3 =
(c)2

(a)2

1
2(2 + λ)

[
p2 −

3λ − 1
4(1 + λ)

p2
1

]
, (18)

a4 =
(c)3

(a)3

1
2(3 + λ)

[
p3 −

3λ2 + 4λ − 1
2(1 + λ)(2 + λ)

p1 p2 +
4λ2 − 3λ − 1

8(1 + λ)(2 + λ)
p3

1

]
. (19)

Thus, from Lemma 1, we have

|a2| ≤
∣∣∣

c

a

∣∣∣
1

1 + λ
,

|a3| ≤
∣∣∣∣
(c)2

(a)2

∣∣∣∣
1

2(2 + λ)

∣∣∣∣p2 −
3λ − 1

4(1 + λ)
p2

1

∣∣∣∣ ,

and, according to Lemma 2, it follows that

|a3| ≤
∣∣∣∣

(c)2

(a)2(2 + λ)

∣∣∣∣max
{

1;

∣∣∣∣
λ − 3

2(1 + λ)

∣∣∣∣
}

,

and

a4 =
(c)3

(a)3

1
2(3 + λ)

[
p3 −

3λ2 + 4λ − 1
2(1 + λ)(2 + λ)

p1 p2 +
4λ2 − 3λ − 1

8(1 + λ)(2 + λ)
p3

1

]
. (20)

Replacing the values of p2 and p3 given by the relations (11) and (12) in (20), respectively, and,
denoting p := p1, we get

a4 =
(c)3

(a)3

1
2(3 + λ)

×
[

3λ2 − λ + 4
8(1 + λ)(2 + λ)

p3 − 2λ2 + λ + 3
2(1 + λ)(2 + λ)

(
4 − p2

)
px

−1
4

(
4 − p2

)
px2 +

1
2

(
4 − p2

)
(1 − |x|2)z

]
,

for some complex numbers x and z, with |x| < 1 and |z| ≤ 1. Using the triangle’s inequality and
substituting |x| = y, we get

|a4| ≤
(c)3

(a)3

1
4(3 + λ)

×
[

3λ2 − λ + 4
8(1 + λ)(2 + λ)

p3 +

∣∣2λ2 + λ + 3
∣∣

2(1 + λ)(2 + λ)

(
4 − p2

)
py

+
1
4

(
4 − p2

)
py2 +

1
2

(
4 − p2

) (
1 − y2

)]
=: F (p, y), (0 ≤ p ≤ 2, 0 ≤ y ≤ 1).

Now, we will find the maximum of the function F(p, y) on the closed rectangle [0, 2]× [0, 1]. Denoting

H(p, y) :=
3λ2 − λ + 4

8(1 + λ)(2 + λ)
p3 +

∣∣2λ2 + λ + 3
∣∣

2(1 + λ)(2 + λ)

(
4 − p2

)
py +

1
4

(
4 − p2

)
py2

+
1
2

(
4 − p2

) (
1 − y2

)
,
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and using the MAPLETM software for the following code

[> H :=(3*l^2-l+4)*p^3/(8*(1+l)*(2+l))-

(2*l^2+l-3)*(-p^2+4)*p*y/(2*(1+l)*(2+l))

- 1/4*(-p^2+4)*p*y+1/2*(-p^2+4)*(-y^2+1);

[> maximize(H, p=0 .. 2, y=0 .. 1, location);

we get

max(2, (3*l^2-l+4)/((1+l)*(2+l))),

{[{p=2}, (3*l^2-l+4)/((1+l)*(2+l))],

[{p=0, y=0}, 2]}

that is

max {H(p, y) : (p, y) ∈ [0, 2]× [0, 1]} = max
{

2;
3λ2 − λ + 4

(1 + λ)(2 + λ)

}
,

and

2 = H(0, 0),
3λ2 − λ + 4

(1 + λ)(2 + λ)
= H(2, y).

A simple computation shows that 2 >
3λ2 − λ + 4

(1 + λ)(2 + λ)
whenever λ ≥ 0; therefore,

max {H(p, t) : (p, t) ∈ [0, 2]× [0, 1]} = 2 = H(0, 0),

which implies that

max {F (p, y) : (p, y) ∈ [0, 2]× [0, 1]} =
(c)3

(a)3

1
2(3 + λ)

= F (0, 0),

and the proof of our theorem is complete.

Theorem 2. If f ∈ MLa
c(λ; ψ) is of the form (1), then, for any µ ∈ C, we have

∣∣∣a3 − µ a2
2

∣∣∣ ≤ |(c)2|
|(a)2|

1
2 + λ

max
{

1;
|(λ − 3)(1 + λ)a(c + 1) + 2µ(2 + λ)c(a + 1)|

2(1 + λ)2|a(c + 1)|

}
.

Proof. If f ∈ MLa
c(λ; ψ) is of the form (1), from (17) and (18), we get

a3 − µ a2
2 =

1
2(2 + λ)

(c)2

(a)2

(
p2 − νp2

1

)
,

where

ν =
(3λ − 1)(λ + 1)a(c + 1) + 2µ(2 + λ)c(a + 1)

4(1 + λ)2a(c + 1)
.

Taking the modules for the both sides of the above relation, with the aid of the inequality (7) of
Lemma 2, we easily get the required estimate.

For a = c, the above theorem reduces to the following special case:

Corollary 1. If f ∈ ML(λ; ψ) is given by (1) then, for any µ ∈ C, we have

∣∣∣a3 − µ a2
2

∣∣∣ ≤ 1
2 + λ

max
{

1;
|(λ − 3)(1 + λ) + 2µ(2 + λ)|

2(1 + λ)2

}
.
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Remark 4. If f ∈ ML(λ; ψ) is given by (1) then, for the special case µ = 1, we get

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
2 + λ

max
{

1;
λ2 + 1

2(1 + λ)2

}
=

1
2 + λ

.

If we take µ ∈ R in Theorem 2, we get the next special case:

Theorem 3. 1. If the function f ∈ MLa
c(λ; ψ) is given by (1),

a(c + 1)
c(a + 1)

> 0 and µ ∈ R, then

∣∣∣a3 − µ a2
2

∣∣∣ ≤





a(c + 1)(3 − λ)(λ + 1)− 2µc(a + 1)(2 + λ)

2a(c + 1)(λ + 1)2(2 + λ)

∣∣∣∣
(c)2

(a)2

∣∣∣∣ , if µ ≤ δ1,

1
2 + λ

∣∣∣∣
(c)2

(a)2

∣∣∣∣ , if δ1 ≤ µ ≤ δ2,

a(c + 1)(λ − 3)(λ + 1) + 2µc(a + 1)(2 + λ)

2a(c + 1)(λ + 1)2(2 + λ)

∣∣∣∣
(c)2

(a)2

∣∣∣∣ , if µ ≥ δ2,

where

δ1 := − (3λ − 1)(λ + 1)
2(2 + λ)

a(c + 1)
c(a + 1)

and δ2 :=
(λ + 1)(λ + 5)

2(2 + λ)

a(c + 1)
c(a + 1)

.

2. Furthermore, if δ1 < µ ≤ δ3, then

|a3 − µa2
2|+

(3λ − 1)(λ + 1)a(c + 1) + 2µ(2 + λ)c(a + 1)
2(2 + λ)c(a + 1)

|a2|2 ≤ |(c)2|
|(a)2|

1
2 + λ

. (21)

If δ3 ≤ µ < δ2, then

|a3 − µa2
2|+

(λ + 1)(λ + 5)a(c + 1)− 2µ(2 + λ)c(a + 1)
2(2 + λ)c(a + 1)

|a2|2 ≤ |(c)2|
|(a)2|

1
2 + λ

, (22)

where

δ3 :=
(λ + 1)(3 − λ)

2(2 + λ)

a(c + 1)
c(a + 1)

.

These results are sharp.

Proof. If f ∈ MLa
c(λ; ψ) is given by (1), from (17) and (18), we get

a3 − µ a2
2 =

1
2(2 + λ)

(c)2

(a)2

(
p2 − νp2

1

)
, (23)

where

ν =
(3λ − 1)(λ + 1)a(c + 1) + 2µ(2 + λ)c(a + 1)

4(1 + λ)2a(c + 1)
=

3λ − 1
4(1 + λ)

+ µ
2 + λ

2(1 + λ)2
c(a + 1)
a(c + 1)

.

From the assumptions, using the second above equality, it follows that ν ∈ R. We have

4ν − 2 =
a(c + 1)(λ − 3)(λ + 1) + 2µc(a + 1)(2 + λ)

a(c + 1)(λ + 1)2 ,

ν ≥ 1 is equivalent to µ ≥ δ2, and ν ≤ 0 is equivalent to µ ≤ δ1.
Then, taking the modules for both sides of the above equality, with the aid of the inequality (8) of

Lemma 3, we obtain the first estimates of Theorem 3.
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For the proof of the second part, first we see that 0 < ν ≤ 1/2 is equivalent to δ1 < µ ≤ δ3. Using
the relations (23) and (17), and then applying the inequality (9) of Lemma 3, we get

|a3 − µa2
2|+ (µ − δ1)|a2

2| = |a3 − µa2
2|+ |µ − δ1||a2

2| =
1

2(2 + λ)

∣∣∣∣
(c)2

(a)2

∣∣∣∣
[
|p2 − νa2

1|+ ν|p2
1|
]
≤ 1

2 + λ

∣∣∣∣
(c)2

(a)2

∣∣∣∣ ,

which represents the required inequality (21).
Furthermore, we easily check that 1/2 ≤ ν < 1 is equivalent to δ3 ≤ µ < δ2. From the relations

(23) and (17), and then applying the inequality (10) of Lemma 3, we obtain

|a3 − µa2
2|+ (δ2 − µ)|a2

2| = |a3 − µa2
2|+ |δ2 − µ||a2

2| =
1

2(2 + λ)

∣∣∣∣
(c)2

(a)2

∣∣∣∣
[
|p2 − νa2

1|+ (1 − ν)|p2
1|
]
≤ 1

2 + λ

∣∣∣∣
(c)2

(a)2

∣∣∣∣ ,

which is the inequality (21).
To prove that the bounds are sharp, we define the functions Fη and Gη , 0 ≤ η ≤ 1, respectively,

with Fη(0) = 0 = F′
η(0)− 1 and Gη(0) = 0 = G′

η(0)− 1 by

z
(
La

c Fη(z)
)′

(1 − λ)La
c Fη(z) + λz

= ψ

(
z(z + η)

1 + ηz

)
,

and
z(La

c Gη(z))′

(1 − λ)La
c Gη(z) + λz

= ψ

(
− z(z + η)

1 + ηz

)
,

respectively. Clearly, Kψn(z) := ψ(zn−1), Fη , Gη ∈ MLa
c(λ; ψ). In addition, we write Kψ2(z) :=

Kψ(z) = z +
√

1 + z2.
If µ < δ1 or µ > δ2, then the equality holds if and only if f is Kψ or one of its rotations. When

δ1 < µ < δ2, then the equality holds if and only if f is Kψ3(z) = z2 +
√

1 + z4 or one of its rotations.
If µ = δ1, then the equality holds if and only if f is Fη or one of its rotations. If µ = δ2, then the equality
holds if and only if f is Gη or one of its rotations.

4. Hankel Determinant Result for f ∈ ML
a
c (λ; ψ)

The next result deals with an upper bound of H2,2( f ) for the subclass MLa
c(λ; ψ):

Theorem 4. If f ∈ MLa
c(λ; ψ) is given by (1) and

1 ≤ (c + 1)2

(a + 1)2
≤ 27

20
, (24)

then ∣∣∣a2a4 − a2
3

∣∣∣ ≤
(
(c)2

(a)2

)2 1
2(2 + λ)2 . (25)

Proof. If f ∈ MLa
c(λ; ψ), using a similar proof like in the proof of Theorem 1, from (17), (18), and (19),

we get
a2a4 − a2

3 = k1 p4
1 + k2 p2

1 p2 + k3 p1 p3 + k4 p2
2,
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where

k1 =
c(c)3

a(a)3

4λ2 − 3λ − 1
32(1 + λ)2(3 + λ)(2 + λ)

−
(
(c)2

(a)2

)2 1
4(2 + λ)2

(
3λ − 1

4(1 + λ)

)2

,

k2 =
3λ − 1

8(2 + λ)2(1 + λ)

(
(c)2

(a)2

)2

− c

a

(c)3

(a)3

3λ2 + 4λ − 1
4(1 + λ)2(2 + λ)(3 + λ)

,

k3 =
c

a

(c)3

(a)3

1
4(1 + λ)(3 + λ)

,

k4 = −
[(

(c)2

(a)2

)2 1
4(2 + λ)2

]
.

Using the relations (11) and (12) of Lemma 4, we get

∣∣∣a2a4 − a2
3

∣∣∣ = (26)
∣∣∣∣Ap4

1 + B
(

4 − p2
1

)
xp2

1 +

[
k4

4

(
4 − p2

1

)
− k3

4
p2

1

] (
4 − p2

1

)
x2 +

k3

2
p1

(
4 − p2

1

) (
1 − |x|2

)
z

∣∣∣∣ ,

with |x| ≤ 1, |z| ≤ 1, and

A :=
1
4
(4k1 + 2k2 + k3 + k4) =

1
64(2 + λ)2(1 + λ)2(3 + λ)

×
[
2s(4λ2 − 3λ − 1) (2 + λ) (a)2

2 +
(
−20s(a)2

2 − (c)2
2
)

λ3 +
(
−60s(a)2

2 + 3 (a)2
2
)

λ2

+
(
−24 s(a)2

2 + 9 (c)2
2
)

λ + 32 s(a)2
2 − 27 (c)2

2
]

,

B :=
1
2
(k2 + k3 + k4) =

(
−4 (a)2

2 + (c)2
2
)

λ3 +
(
−10 s(a)2

2 + (c)2
2
)

λ2 +
(

2 s(a)2
2 − 9(c)2

2
)

λ + 12 s(a)2
2 − 9(c)2

2

16 (1 + λ)2 (3 + λ) (2 + λ)2 (a)2
2

where s =
c(c)3

a(a)3
. Since φ ∈ P , it follows that φ

(
e−i arg p1 z

)
∈ P , hence we may assume without loss

of generality that p := p1 ≥ 0, and, according to Lemma 1, it follows that p ∈ [0, 2]. Now, using the
triangle’s inequality in (26) and substituting |x| = t, we get

∣∣∣a2a4 − a2
3

∣∣∣ ≤ |A| p4 + |B|
(

4 − p2
)

p2t +
|k4|

4

(
4 − p2

)2
t2 +

|k3|
4

p2
(

4 − p2
)

t2

+
|k3|

2
p
(

4 − p2
)
(1 − t2) =: G(p, t), (0 ≤ p ≤ 2, 0 ≤ t ≤ 1).

Next, we will find maximum of G(p, t) on the closed rectangle [0, 2]× [0, 1]. Using the MAPLETM

software for the following code, where we denoted C := k4 and D1 = E := k3,

[>G :=abs(A)*p^4+abs(B)*(-p^2+4)*p^2*t+1/4*abs(C)*(-p^2+4)^2*t^2

+1/4*abs(D1)*p^2*(-p^2+4)*t^2+1/2*abs(E)*p*(-p^2+4)*(-t^2+1);

[> maximize(G, p=0 .. 2, t=0 .. 1, location);

max(16*abs(A), 4*abs(C)),

{[{p=2}, 16*abs(A)], [{p=0, t=1}, 4*abs(C)]}

or

max(16|A|, 4|C|), {[{p=2}, 16|A|], [{p=0, t=1}, 4|C|]},
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which is
max {G(p, t) : (p, t) ∈ [0, 2]× [0, 1]} = max{16|A|; 4|C|},

and
16|A| = G(2, t), 4|C| = G(0, 1).

We will prove that, under our assumption we have 4|C| ≥ 16|A|, and therefore

max {G(p, t) : (p, t) ∈ [0, 2]× [0, 1]} = 4|C| = 4 |k4| = G(0, 1). (27)

Letting α :=
c

a

(c)3

(a)3
and β :=

(
(c)2

(a)2

)2

, from (24), it follows that α ≥ β > 0. A simple computation

shows that
4A = 4k1 + 2k2 + k3 + k4 = αM − βN,

where

M :=
5(1 − λ)

8(1 + λ)2(2 + λ)(3 + λ)
≥ 0, λ ∈ [0, 1], and N :=

(λ − 3)2

16[(1 + λ)(2 + λ)]2
.

Since

A =
αM − βN

4
=

10α(1 − λ)(2 + λ)− β(λ − 3)2(3 + λ)

64(1 + λ)2(2 + λ)2(3 + λ)
, λ ∈ [0, 1],

then A ≤ 0 if and only if the inequality 10α(1 − λ)(2 + λ) − β(λ − 3)2(3 + λ) ≤ 0 holds for all
λ ∈ [0, 1]. This last inequality is equivalent to

α

β
=

(c + 1)2

(a + 1)2
≤ (λ − 3)2(λ + 3)

10(λ + 2)(1 − λ)
=: t(λ), λ ∈ [0, 1],

and a simple computation shows that t(λ) ≥ t(0) =
27
20

for all t ∈ [0, 1]. Therefore, the above inequality

holds whenever the assumption (24) is satisfied, hence A ≤ 0. Since C < 0, we have

16|A| − 4|C| = −16A + 4C = −α
5(1 − λ)

2(3 + λ)(1 + λ)2(2 + λ)

+β
(λ − 3)2

4[(1 + λ)(2 + λ)]2
− β

1
(2 + λ)2 =

αU − βV

4(3 + λ)[(1 + λ)(2 + λ)]2
,

with
U := 10(λ − 1)(λ + 2) ≤ 0, λ ∈ [0, 1], and V := (3λ − 1)(λ + 3)(λ + 5).

Since
U − V = −3λ3 − 13λ2 − 27λ − 5 < 0, λ ∈ [0, 1],

we have U < V.
If λ ∈ [0, 1/3], then V ≤ 0, and using the inequality α ≥ β > 0, we get αU − βV < 0. If λ ∈

[1/3, 1], then V ≥ 0, and, because U ≤ 0, α, β > 0, it follows that αU − βV < 0.
Therefore, for all λ ∈ [0, 1], we have 16|A| < 4|C|. Since (27) was proved, the upper bound

of G(p, t) on the closed rectangle [0, 2] × [0, 1] is attained at p = 0 and t = 1, which implies the
inequality (25).

Remark 5. By suitably specializing the parameter λ, one can deduce the above results for the subclasses of

SLa
c(λ; ψ), and RLa

c(λ; ψ), which are defined, respectively, in Remark 3 (i) and (ii). Furthermore, by taking

a = c, we can easily state the result for the function class ML(λ, ψ) given in Remark 3 (iii). The details

involved may be left as an exercise for the interested reader.
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