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A B S T R A C T

In this article, we analyse the dynamical behaviour of a prey predator fishery model. The model is studied and
analysed on the basis of harvesting of prey species in an environment which consists of two sectors.
Mathematically, we have analysed the boundedness of the solution and the local stability of positive interior
equilibrium point. The time lag in terms of delay parameter corresponds to the predator gestation period. The
occurrence of Hopf-bifurcation of the proposed model is shown at the positive equilibrium point by considering
delay as a bifurcation parameter. We observe that the system exhibits periodic oscillations due to an increase of
the delay parameter. Furthermore, we examined the impact of noise on the model system using the Fourier
transform technique. Finally, we verified our analytical findings by means of graphical illustrations.

1. Introduction

Now-a-days, the world population is growing substantially, and a
responsibility is to provide food to various species of the natural en-
vironment. There are several food resources in the natural environment
and one of them concerns fisheries. The system of fisheries comprises
bionomic and social mechanisms, delivering distinguishing view points
on the fishery. Numerous species have become extinct and other species
are approaching this, owing to several causes such as predation, bio-
logical contamination, uncritical garnering, mishandling of normal re-
serves, and so on. To defend species from extinction, refining of cir-
cumstances in natural environments is necessary, thereby reducing the
interactions among species with other agents. Then the growth of
species and protected populations may increase without restriction. The
elementary hypothetical implementation in several surveys [1–3] is the
system of Lotka-Volterra equations for a prey with population density.
In the truancy of the predator populace, the prey populace develops
exponentially, and in the truancy of prey, the predator population de-
cays exponentially.

Investigators have proceeded to examine the stability mediating the
effects of a long list of such processes [4–8], and studied a more com-
plex populace with special resources in a two patchy environment. They
show and develop a steadiness analysis in view of local and global
stable states of complex models with an induced Holling type inter-
active environment. A few researchers [9–18] have contributed some

qualitative role plays, which inspired us to develop modified models
including harvesting strategies with and without feedback controls, and
similarly with and without stochasticity. Kunal Chakraborty et al. [22],
studied the dynamics, bifurcation and control of the biological and
economical controls of the prey predator system with time delay, but
did not develop a stochastic analysis, which inspires us to extend the
work based on environmental dynamics in a different dimension.

Some researchers have worked on permanence or stability of posi-
tive equilibria or positive periodic solutions under limited conditions,
which are sufficient to attain the goal of simulating an appropriate bio-
ecological system. In these simulations, most of the systems were built
on the assumption that intrinsic growth rates are always positive, which
translates biologically to every organism developing under a suitable
environment without any disturbances.

Whereas, looking into an actual real scenario, more organisms are
under the influence of environmental disturbances. Environmental
factors which can disturb may be manmade - human activities and
waste from industries which can pollute the environment including the
atmosphere, rivers, soil and water. The natural resources and en-
vironment are polluted by many means, leading to dispersals and re-
sulting in a breakup of the cultivating and fishing area into patches. In
some of these patches, sometimes even in every patch, species will
become extinct without contributions from other patches. In the present
paper, our interest is to study the species population densities by con-
sidering a two patchy environment with a time delay in gestation.
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Thus, by applying a strategy of gradual growth in the harvesting
coefficient of the prey population, it does not affect the death rate of the
predator populace extensively when developing simulative strategic
modelling. This sort simulation can be achieved with the help of a
strong elemental constraint out of several regulatory mechanisms and
methodologies, like the two patchy environment, stochastic theory,
feedback control theory etc. These are the most popular, and are pos-
sible regulatory mechanisms and techniques studied and developed by
many authors [19–27] for fish populations under a dynamic environ-
ment. Considering some creative strategies like marine reserve zones,
marine patchy zones and a two patchy environment are treated as
significant techniques, which inspires us to simulate and develop a
model for organisms under a two patchy environment with some stra-
tegies like harvesting, time delay and noise introduction.

However, as far as bio-ecological simulations are concerned in view
of predator-prey developments and interactions, some research studies
have treated population with an enhanced harvesting or delay effort
and were developed using a trendy and suitable harvesting, spatial
dynamics and time delay. In the model with harvesting, some con-
tributions focused on population to solve economic problems and meet
the expectations of the system study. An induced time delayed model
and model without time delay in population are considered by some
creative studies [12–17,20–22], and inspires us to consider the current
model in a two patchy environment with a time delay in gestation.

The above analysis suggests that a considerable effort may be
needed to simulate a model under the influence of environmental fac-
tors and noise. Many bio-ecological models have been simulated and
implemented by introducing new strategies with and without stochastic
theories developed and verified with appropriate results, which pro-
vides the inspiration for many researchers [9–11,19–22,26]. Manju
Agarwal et al. [23,24]. considered and developed a two patchy en-

vironment without a noise factor. They also checked the effect of non-
selective harvesting on the prey-predator system in an unreserved zone,
and stability analysis in terms of both local and global factors. But in
view of the authors' knowledge and a literature search, there is no prior
study which considers an environmental factor noise on a two patchy
environment with a selective timing strategy.

Keeping these in mind, we considered a prey predator model with
migration of prey, delay and noise, in which we analysed the effect of
predator standby capacity, harvesting and noise on a two patchy aquatic
delayed eco system. The current article is different from other work in
view of the environmental factor dynamics and bifurcational dynamics.

Therefore, the proposed model is significantly different from other models
using differential algebraic equations, and requires separate investigation.

Keeping these in mind, the current model is proposed and developed
with strategies such as migration induced prey, delay and noise, in
which we analysed the effect of predator standby capacity, harvesting
and noise on a two patchy aquatic delayed ecosystem. The current ar-
ticle is also different other work in view of environmental factor dy-
namics and bifurcation dynamics. Thus the proposed model is poten-
tially interesting and attractive to researchers as a new combinational
and updated model using a stochastic approach is strategically defined.
The total segments of the paper are framed as seg1, seg2, seg3 … seg8.
In seg 2, we formulate a mathematical model with assumption. In seg 3
boundedness of solution of a deterministic model is discussed. Seg 4
deals with the existence of equilibrium points with feasible condition.
In seg 5, local stability analysis of positive interior equilibrium points is
discussed. Seg 6 deals with delay analysis of positive interior equili-
brium point. In seg 7, we computed the population intensity of fluc-
tuation due to incorporation of noise which leads to chaos. Numerical
simulation of the proposed model is presented in seg 8. The discussion
and conclusion are presented in the last seg.

2. Mathematical model and its qualitative role play

In seg 2, we simulate a structure with migration of prey populace in
a two patchy environment. Both patch-1 and patch-2 are free fishing
sectors for prey but not predator. We assumed that each sector is to be
homogeneous. The growth of the prey populace in the truancy of pre-
dator populace in view of growth is logistic. Partial harvesting is per-
mitted in the patches of prey population, and the predator population
are not participated in harvesting. A pictorial representation of this
biological phenomenon is in the Fig. 100.

By considering these in view, the dynamics of the system may be
governed by the following equations.
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≥ ≥ ≥p p p(0) 0, (0) 0, (0) 01 2 3 (4)

Here all parameters are assumed to be positive. Let p p,1 3 denote
densities of prey and predator population respectively, and p2 denote
density of the prey population inner part of the reserved zone, where
there is an absence of predation considered at time t. In model (1–3),
r r,1 2 denotes intrinsic growth rates of prey population inside zone-1
and zone-2 respectively. K denotes the environmental carrying capacity
of the total prey population. η is the self-limitation on predator species.
θ is the part of an area under protection. m1 and m2 are migration rates
of the prey in Zone-1 and Zone-2 respectively. a1 is the capturing rate of
predators and a2 is the conversion rate of predators. β is the half-sa-
turating constant. d is the death rate of the predator population

=q i( 1,2)i are the constant catch ability coefficients of prey species in
zone-1 and zone-2 respectively and =E i( 1,2)i is the combined effort
applied to harvest prey species in zone-1 and zone-2. Throughout our
analysis, we assume that − >r q E 01 1 1 ; − >r q E 02 2 2 .

3. Boundedness of the solution

Theorem. All the non-negative solutions of the model system (1–3) that
initiate in R+

3 are uniformly bounded.

Proof. Let p t p t p t( ), ( ), ( )1 2 3 be any solution of the system (1)–(3) with
non-negative initial condition such that

= + +w t p t p t p t( ) ( ) ( ) ( )1 2 3 (5)

Differentiate (5) with respect to t, we obtain
′ = ′ + ′ + ′w t p t p t p t( ) ( ) ( ) ( )1 2 3
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Since from a biological point of view, the conversion rate from prey
to predator cannot exceed the predators maximum attack rate, hence
we have ≥a a1 2, and obtain

′ + ≤ + − − =w t ξw r θK r θ K η μ( ) (1 )1 2 where =ξ min
− −r q E r q E d{ , , }1 1 1 2 2 2 .
Applying a Lemma on differential inequalities, we obtain

≤ ≤ − +−w p p p μ ξ e w p p p e0 ( , , ) ( / )(1 ) ( ( (0), (0), (0))/ )ξt ξt
1 2 3 1 2 3 and for

→ ∞t
We have ≤ ≤w p p p μ ξ0 ( , , ) ( / )1 2 3 .
Therefore the solution of system (1–3) is represented as

= ∈ ≤ ≤ + ∀ >+Γ p p p R w μ ξ ε ε{( , , ) : 0 ( / ) , 0}1 2 3
3 (6)

This completes the Proof.

4. Existence of equilibrium points with feasible condition

For the system (1)–(3) we have the equilibrium points as

(i) E (0,0,0)0 which always exists.
(ii) E p( , 0,0).1 1 where = ⎡⎣ − − ⎤⎦p r q EθK

r
m
θK1 1 1 11

1 .

− >p r q E m
θK

For to be positive, we have1 1 1 1
1

(7)

(iii) E p p( , 0, )ϕ ϕ
2 1 3 where = ⎡

⎣⎢
− ⎤

⎦⎥+
p d .ϕ

η
a p

β p3
1

ϕ

ϕ
2 1

1

For p ϕ
3 to be positive,

+
>

a p
β p

dwe must have ,
ϕ

ϕ
2 1

1 (8)

From equation (1) we have + + =A p Bp C( ) 0ϕ ϕ
1

2
1

Where = > = − − −( )A r B r β θ r q E0; . ;m
θK1 1 1 1 1

1

= ⎛
⎝

− − ⎞
⎠
−C θKβ r q E m

θK
a p θK .ϕ

1 1 1
1

1 3

For p ϕ
1 to be positive and unique, we must have

< ⎛
⎝

− − ⎞
⎠

r β θ r q E m
θK1 1 1 1

1

(9)

⎛
⎝

− − ⎞
⎠
<θKβ r q E m

θK
a p θKand ϕ

1 1 1
1

1 3 (10)

(iv) ∗ ∗ ∗E p p p( , , )3 1 2 3 where

= ⎡
⎣

− ⎤
⎦

= ⎡
⎣

− + ⎤
⎦

∗
+

∗ −
+

∗

∗

∗
p d p r q E, ( )η

a p
β p

θ K
r m

m p
θK3

1
2

(1 )
( ) 2 2 2

2 1

1 2 2

1 1

For ∗ ∗p p,3 2 to be positive we must have >+
∗

∗

∗ da p
β p 1

2 1

1
(11) and from

equation (1), we have + + =A p B p C( ) 0ϕ ϕ
1 1

2
1 1 1 and for ∗p1 to be posi-

tive and unique, we must have =r θKL
β1 and =∗p βL

a3 1
where

= − − −
−

∗

L r q E m
θK

m p
θK(1 )1 1 1

1 2 2

(12)

5. Stability analysis for positive interior steady state point

Theorem. The positive interior steady state ∗ ∗ ∗E p p p( , , )3 1 2 3 is
asymptotically locally stable if it satisfies the condition

> > − >A A A A A0, 0, 01 2 1 2 3

Proof. Let the Jacobian matrix of the system (1–3) evaluated at the
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Thus the characteristic equation of the Jacobian matrix at E3 is
obtained as

+ + + =λ A λ A λ A 03
1

2
2 3 (13)

where
= − + + = + + − −A a a a A a a a a a a a a a a( ), ,1 11 22 33 2 11 22 22 33 11 33 12 21 13 31

= + −A a a a a a a a a a3 12 21 33 13 22 31 11 22 33

Using Routh-Hurwitz criteria, it follows that all eigen values of the
characteristic equation (13) have negative real parts if and only if;

> > − >A A A A A0, 0, 01 2 1 2 3 (14)

6. Delay analysis

In this segment 6 we analyse the model system (1–3) with an ele-
mentary constraint of time τ (represents the delay in predator popula-
tion response function). Then the proposed structure (1–3) is shaped as
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with the initial densities ≥ ≥p θ p θ( ) 0, ( )1 2 ≥p θ0, ( ) 0,3
∈ − ≠θ τ τ( , 0), 0.
The remarkable note of this segment is to discuss the behaviour

analysis of ∗ ∗ ∗E p p p( , , )3 1 2 3 in the presence of discrete delay (τ≠ 0). Now
to prove the stability behaviour of ∗ ∗ ∗E p p p( , , )3 1 2 3 for the system
(15–17), first we linearize the system (15–17) by using the following
transformation
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We look for solution of the model (15–17) of the form
= ≠−A τ ρe ρ( ) , 0λτ , which leads to the characteristic equation

= + + + + + =−λ τ λ u λ u λ u u λ u eΔ( , ) ( ) ( ) 0λτ3
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2
2 3 4 5 (18)

where = − − −u a a a ,1 11 22 33 = − + +u a a a a a a a a ,2 11 22 21 12 11 33 33 22
= −u a a a a a a3 12 21 33 11 22 33, = −u a c ,4 13 31 =u a a c5 13 22 31

The eigenvalues are the roots of the characteristic equation (18) of
the system (15–17) that has infinitely many solutions. We wish to find a
periodic solution of the system (15–17); for the periodic solution ei-
genvalues will be purely imaginary.

Substituting =λ iω in equation (18) we get
− − + + + + =−iω u ω iu ω u iu ω u e[ ] [ ] 0iωτ3
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2
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Squaring and adding we obtain,
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Now equation (20) will be positive if

> <S S0, 01 3 (21)

By the Descartes rule of sign, the cubic equation (20) has at least one
positive root. Consequently the stability criteria of the system for τ=0,
will not necessarily ensure the stability of system for τ≠0.

The critical value of delay is given as
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6.1. Hopf bifurcation role play

We observe that the conditions for Hopf bifurcation are satisfied
yielding the required periodic solution, that is ⎡⎣ ⎤⎦ ≠

=
λ(Re ) 0d

dτ τ τ0
. This

signifies that there exists at least one eigenvalue with a positive real

part for > ∗τ τ . Now we show the existence of Hopf bifurcation near
∗ ∗ ∗E p p p( , , )2 1 2 3 by taking τas bifurcating parameter.

Differentiating equation (18) with respect to τ
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Taking =λ iω0 in the above equation, we obtain
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Thus we obtain >
=

−( )Re 0dλ
dτ λ iω

1

0
. Therefore the transversity condi-

tion holds and hence Hopf bifurcation occurs at = ∗τ τ . This signifies
that there exists at least or equal value with positive real part for > ∗τ τ .

Theorem. If E3 exists with the condition (11-12) and =δ ω0
2 is a positive

root of (19), then there exists a = ∗τ τ such that (i) E3 is locally
asymptotically stable for ≤ < ∗τ τ0 ; (ii) E3 is unstable for > ∗τ τ ; (iii)
The system (15–17) undergoes a Hopf –bifurcation around
E2 at = ∗τ τ , =∗τ h ωmin ( )0 . Where = ∗h ω τ( )0 0
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minimum is taken over all positive ω0, such that =δ ω0
2 is a solution of (19).

7. Stochasticity role play

This segment is mainly focused on the stochastic approach for the
proposed structure, and determines the impact of random noise in view
of steadiness and other dynamics. The stochastic approach for the
proposed structure [1–3] is defined as

⎜ ⎟′ = ⎛
⎝

− ⎞
⎠
− +

−
−

+
−

+

p t r p
p

θk
m p
θk

m p
θ k

α p p
β p

q E p

ξ ψ t

( ) 1
(1 )

( )

1 1 1
1

1

1 1

1

2 2

1

1 1 3

1 1
1 1 1

1 1

⎜ ⎟′ = ⎛
⎝

−
−

⎞
⎠
+ −

−
− +p t r p

p
θ k

m p
θk

m p
θ k

q E p ξ ψ t( ) 1
(1 ) (1 )

( )2 2 2
2

1

1 1

1

2 2

1
2 2 2 2 2

(22)

′ = − +
+

− +p t ηp
α p p
β p

dp ξ ψ t( ) ( )3 3
2 2 1 3

1 1
3 3 3

Where ξ ξ ξ, ,1 2 3 are the real constants and =ψ t ψ t ψ t ψ t( ) [ ( ), ( ), ( )]i 1 2 3
is a three dimensional Gaussian white noise process satisfying

=E ψ t( ( )) 0;i =i 1, 2, 3; = − ′E ψ t ψ t δ δ t t[ ( ) ( )] ( );i j ij = =i j 1, 2, 3
where δij is the Kronecker symbol and δ is the δ-Dirac function. All
other parameters have their usual meanings (section 1)

= + = +

= + ′ = ′ ′ = ′ ′ = ′

∗ ∗

∗

p t u t S p t u t P p t

u t T p t u t p t u t p t u t

Let ( ) ( ) ; ( ) ( ) ; ( )

( ) ; Then ( ) ( ); ( ) ( ); ( ) ( )
1 1 2 2 3

3 1 1 2 2 3 3

(23)

Using (23), the linear parts of (22)

V. Madhusudanan et al. Informatics in Medicine Unlocked xxx (xxxx) xxx–xxx

4



′ = − − +∗ ∗u t r
θK

u t S α u t S ξ ψ t( ) ( ) ( ) ( )1
1

1 1 3 1 1

′ = −
−

+∗u t r
θ k

u t P ξ ψ t( )
(1 )

( ) ( )2
2

1
2 2 2 (24)

′ = − + +∗ ∗u t ηu t T α u t T ξ ψ t( ) ( ) ( ) ( )3 3 2 1 3 3

Taking the Fourier transform on both sides of (24) we get,

⎛
⎝

+ ⎞
⎠

+ = ∼∗
∗iω r S

θK
u ω α S u ω ξ ψ ω( ) ( ) ( )͠ ͠1

1 1 3 1 1

⎜ ⎟
⎛
⎝

+
−

⎞
⎠

= ∼∗iω r
θ K

P u ω ξ ψ ω
(1 )

( ) ( )͠2
2 2 2

(25)

+ − = ∼∗ ∗iω ηT u ω α T u ω ξ ψ ω( ) ( ) ( ) ( )͠ ͠3 2 1 3 3

The matrix form of (25) is

= ∼M ω u ω ψ ω( ) ( ) ( )͠ (26)

where

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∼

∼

∼

∼
M ω

A ω B ω C ω
A ω B ω C ω
A ω B ω C ω

u ω
u ω
u ω
u ω

ψ ω

ξ ψ ω

ξ ψ ω

ξ ψ ω

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

; ( )
( )
( )
( )

; ( )

( )

( )

( )

;͠
͠
͠
͠

1 1 1

2 2 2

3 3 3

1

2

3

1 1

2 2

3 3

where = + = = ∗∗
A ω iω B ω C ω α S( ) , ( ) 0, ( ) ,r S

θK1 1 1 1
1

= = +
−

=
∗

A ω B ω iω r P
θ K

C ω( ) 0, ( )
(1 )

, ( ) 0,2 2
2

2

= − = = +∗ ∗A ω α T B ω C ω iω ηT( ) , ( ) 0; ( ) ,3 2 3 3

Equation (26) can also be written as

= ∼−u ω M ω ψ ω( ) [ ( )] ( )͠ 1 (27)

Where

=
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−M ω
R ω iI ω

D D D
E E E
F F F

[ ( )] 1
( ) ( )

1
1 2 3

1 2 3

1 2 3 (28)

and where = ⎡
⎣

− + + + ⎤
⎦

=− −
∗∗ ∗ ∗( ) ( )D ω i ωγT E; 0,r γP T

θ K
r P ω

θ K1
2

(1 ) (1 ) 1
2 2

⎜ ⎟ ⎜ ⎟= ⎡
⎣
⎢
⎛
⎝ −

⎞
⎠
+ ⎛

⎝ −
⎞
⎠
⎤
⎦
⎥ =

∗ ∗ ∗
F α r T P

θ K
i ωα T

θ K
D

(1 ) (1 )
; 0,1

2 2 2
2

= ⎡
⎣⎢
⎛
⎝
− + + ⎞

⎠
+ ⎛

⎝
+ ⎞

⎠
⎤
⎦⎥

=
∗ ∗

∗ ∗
∗

∗E ω
r P T η

θK
α α S T i r ωP

θK
ηωT F, 0,2

2 1
1 2

1
2

⎜ ⎟= ⎡
⎣
⎢
⎛
⎝
−

−
⎞
⎠
+ − ⎤

⎦
⎥ =

∗ ∗
∗D α r S P

θ K
i α ωS E

(1 )
( ) , 0,3

1 2
1 3

= ⎡
⎣⎢ −

− ⎤
⎦⎥
+ ⎡

⎣⎢
+

−
⎤
⎦⎥

∗ ∗ ∗ ∗
F r r S P

θ θ K
ω i r ωS

θK
r ωP

θ K(1 ) (1 )3
1 2

2
2 1 2

Here = + = + = +

= + = + = +

= + = + = +

D X Y D X Y D X Y E

X Y E X Y E X Y F

X Y F X Y F X Y

; ; ;

; ; ;

; ; ;

1
2

1
2

1
2

2
2

2
2

2
2

3
2

3
2

3
2

1
2

4
2

4
2

2
2

5
2

5
2

3
2

6
2

6
2

1
2

7
2

7
2

2
2

8
2

8
2

3
2

9
2

9
2

where = − + = + = =− −
∗∗ ∗ ∗( ) ( )X ω Y ωγT X Y; ; 0; 0;r γP T

θ K
r P ω

θ K1
2

(1 ) 1 (1 ) 2 2
2 2

⎜ ⎟= ⎛
⎝
−

−
⎞
⎠

= − = =
∗ ∗

∗X α r S P
θ K

Y α ωS X Y
(1 )

; ( ); 0; 0;3
1 2

3 1 4 4

= ⎛
⎝
− + + ⎞

⎠
= ⎛
⎝

+ ⎞
⎠

∗ ∗
∗ ∗

∗
∗X ω

r P T η
θK

α α S T Y r ωP
θK

ηωT; ;5
2 1

1 2 5
1

⎜ ⎟ ⎜ ⎟= = = ⎛
⎝ −

⎞
⎠

= ⎛
⎝ −

⎞
⎠

∗ ∗ ∗
X Y X α r T P

θ K
Y ωα T

θ K
0; 0;

(1 )
;

(1 )
;6 6 7

2 2
7

2

⎜ ⎟ ⎜ ⎟= = = ⎛
⎝ −

− ⎞
⎠

= ⎛
⎝

+
−

⎞
⎠

∗ ∗ ∗ ∗
X Y X r r S P

θ θ K
ω Y r ωS

θK
r ωP

θ K
0; 0;

(1 )
;

(1 )8 8 9
1 2

2
2

9
1 2

(29)

= +M ω R ω I ω( ) [ ( )] [ ( )]2 2 2 where

=
−

+
−

− −
−

−
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗R ω
ηr r S P T
θ θ K

α α S P T
θ K

ω r S
θK

ω r P
θ K

ω ηT( )
(1 ) (1 ) (1 )
1 2

2
1 2

2
1

2
2 2

and

= ⎡
⎣⎢ −

+ +
−

+ − ⎤
⎦⎥

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗I ω

r ηωP T
θ K

r ωηS T
θK

r r ωS P
θ θ K

α α ωS T ω( )
(1 ) (1 )
2 1 1 2

2 1 2
3

If the function Y t( ) has a zero mean value, then the fluctuation
intensity (variance) of its components in the frequency interval

+ω ω dω[ , ] is S ω dω( )Y . Where S ω( )Y is the spectral density of Y and is
defined as

= ∼
∼

→∞∼S ω Y ω
T

( ) lim ( )
Y

T

2

(30)

If Y has a zero mean value, the inverse transform of S ω( )Y is the
auto covariance function

∫=
−∞

∞

C τ
π

S ω e dω( ) 1
2

( )Y Y
iωτ

(31)

The corresponding variance of fluctuations in Y t( ) is given by

∫= =
−∞

∞

σ C
π

S ω dω(0) 1
2

( )Y Y Y
2

(32)

and the auto correlation function is the normalized auto covariance

=P τ C τ
C

( ) ( )
(0)Y

Y

Y (33)

For a Gaussian white noise process, it is

∫ ∫

=

= ′ ′ =

∼ ∼

∼ ∼

∼→+∞

→+∞
− −

− − ′

∼

∼

∼

∼

∼

S ω
E ψ ω ψ ω

T

T
E ψ t ψ t e dt dt δ

( ) lim
[ ( ) ( )]

lim 1
ˆ [ ( ) ( )]

ψ ψ
T

i j

T
T

T

T

T

i j
iω t t

ijˆ

2

2

2

2
( )

i j

(34)

∑= =∼

=

u ω K ω ψ ω iFrom (28), we have ( ) ( ) ( ) ; 1,2,3͠ i
j

ij j
1

3

(35)

∑

∑

= =

= =

∼

=

=

u ω K ω ψ ω i S ω

ξ K ω i

From (28), we have ( ) ( ) ( ) ; 1,2,3 ( )

( ) ; 1,2,3

͠ i
j

ij j u

j
j ij

1

3

1

3
2

i

(36)

where = −K ω M ω( ) [ ( )]ij
1

Hence by (35) and (36), the intensities of fluctuations in the vari-
able =u i; 1,2,3i are given by

∫∑= =
= −∞

∞

σ
π

ξ K ω dω i1
2

( ) ; 1,2,3u
j

j ij
2

1

3
2

i
(37)

and from (28), (29), (37) we obtain

∫= ⎧
⎨⎩ +

+ +

+ + ⎫
⎬⎭

−∞

∞

σ
π R ω I ω

ξ X Y ξ X Y

ξ X Y dω

1
2

1
( ) ( )

[ ( ) ( )

( )]

u
2

2 2 1 1
2

1
2

2 2
2

2
2

3 3
2

3
2

1

(38)
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∫= ⎧
⎨⎩ +

+ + +

+ + ⎫
⎬⎭

−∞

∞

σ
π R ω I ω

ξ X Y ξ X Y

ξ X Y dω

1
2

1
( ) ( )

[ ( ) ( )

( )]

u
2

2 2 1 4
2

4
2

2 5
2

5
2

3 6
2

6
2

2

(39)

∫= ⎧
⎨⎩ +

+ + +

+ + ⎫
⎬⎭

−∞

∞

σ
π R ω I ω

ξ X Y ξ X Y

ξ X Y dω

1
2

1
( ) ( )

[ ( ) ( )

( )]

u
2

2 2 1 7
2

7
2

2 8
2

8
2

3 9
2

9
2

3

(40)

where = +M ω R ω iI ω( ) ( ) ( ). If we are interested in the dynamics of
system (22) with either =α 01 or = =α α0 02 3 , then the population
variances are as follows.

If = =ξ ξ0, 01 2 , then

∫ ∫

∫

=
+
+

=
+
+

=
+
+

−∞

∞

−∞

∞

−∞

∞

σ
ξ
π

X Y
R ω I ω

dω σ
ξ
π

X Y
R ω I ω

dω

σ
ξ
π

X Y
R ω I ω

dω

2
( )
( ) ( )

;
2

( )
( ) ( )

;

2
( )
( ) ( )

;

u u

u

2 3 3
2

3
2

2 2
2 3 6

2
6
2

2 2

2 3 9
2

9
2

2 2

1 2

3

If = =ξ ξ0, 02 3 , then

∫ ∫

∫

=
+
+

=
+
+

=
+
+

−∞

∞

−∞

∞

−∞

∞

σ
ξ
π

X Y
R ω I ω

dω σ
ξ
π

X Y
R ω I ω

dω

σ
ξ
π

X Y
R ω I ω

dω

2
( )
( ) ( )

;
2

( )
( ) ( )

;

2
( )
( ) ( )

u u

u

2 1 1
2

1
2

2 21
2 1 4

2
4
2

2 2

2 1 7
2

7
2

2 2

1 2

3

If = =ξ ξ0, 03 1 , then

∫ ∫

∫

=
+
+

=
+
+

=
+
+

−∞

∞

−∞

∞

−∞

∞

σ
ξ
π

X Y
R ω I ω

dω σ
ξ
π

X Y
R ω I ω

dω

σ
ξ
π

X Y
R ω I ω

dω

2
( )
( ) ( )

;
2

( )
( ) ( )

;

2
( )
( ) ( )

u u

u

2 2 2
2

2
2

2 2
2 2 5

2
5
2

2 2

2 2 8
2

8
2

2 2

1 2

3

The equations (38)-(40) give three variations of the inhabitants. The
integrations over the real line can be estimated, which gives the var-
iations of the inhabitants.

8. Numerical simulations

In this section, the proposed model (1–3) has been numerically
explored for the dynamical behaviour using MATLAB software. The
main feature of the simulation is considered from a qualitative point of

Fig. 1. Time series evolution of prey in zone-1.

Fig. 2. Time series evolution of prey in zone-II.

Fig. 3. Time series evolution of predator.

Fig. 4. Phase portrait of the system (1–3).
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view. However, various data sets for the biological feasible parameters
were tested and the results were collected.

Consider the following data

= = = = = = =

= = = =

r r K β a a θ

m m d q

5; 3; 100; 30; 0.75; 1.5; 0.69;

2.5; 2.5; 0.31; 0.3;
1 2 1 2

1 2 1

= = = =q E E η0.3; 2; 2; 0.0012 1 2

From Figs. 1-3, the positive equilibrium point is locally asymptoti-
cally stable. This shows the coexistence occurs between the prey in
Zone-1, prey in Zone-2 and predator respectively. Fig. 4 represents
phase portraits of the system.

Considering the data = = = =r r K β5; 3; 100;1 2 =a30; 1.5;2
= = = =θ m m d0.69; 2.5; 2.5; 0.31;1 2

= = = = =q q E E η0.3; 0.3; 2; 2; 0.0011 2 1 2

Now the capturing rate of the prey to predator in zone-I is considered as
a bifurcation parameter and the dynamical behaviour of the model (1–3) is
analysed. Considering a1 as a bifurcating parameter, periodic oscillations
occur due to Hopf-bifurcation which is shown in Fig. 5. If the value of a1 is
gradually increased, keeping other parameters fixed, the stability of the
system vanishes at the point where a1 crosses its critical value =∗a 0.851 .
The corresponding phase portrait is shown in Fig. 6.

Now a delay is included and the dynamical behaviour of the system
(15–17) is investigated. Considering the data = =r r5; 3;1 2

= = = = = = =K β a a θ m m100; 30; 0.85; 1.75; 0.69; 2.5; 2.5;1 2 1 2
= = = = = =d q q E E η0.31; 0.3; 0.3; 2; 2; 0.0011 2 1 2 and the critical

value of bifurcation parameter = =∗τ τ 9.1
If τ is set to be 8.5, the equilibrium point is locally asymptotically

stable, for populations ∗ ∗ ∗p p p( , , )1 2 3 converging to their steady state in

Fig. 5. Super critical bifurcation of the system (1–3).

Fig. 6. Phase portrait of the system.

Fig. 7. Stable behavior of the delayed system.

Fig. 8. Phase portrait of the delayed system.

Fig. 9. Bifurcation diagram of prey in zone-1.
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finite time, see Fig. 7, with the corresponding phase portrait being
shown in Fig. 8.

Now a gradual increase in the value of τ with other parameters fixed
can reach the critical value = =∗τ τ 9.1, where the stability disappears
and Hopf-bifurcation occurs - see Figs. 9-11. Finally, an inflation in the
value of the delay = > ∗τ τ10.64 proves that the positive interior

Fig. 10. Bifurcation diagram of prey in zone-2.

Fig. 11. Bifurcation diagram of predator.

Fig. 12. Unstable solution of system (15–17) prey in zone-1.

Fig. 13. Unstable solution of system (15–17) in zone-2.

Fig. 14. Unstable solution of system (15–17) in predator.

Fig. 15. Phase portrait of the system (15–17).
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equilibrium point is unstable and a periodic orbit exists near the
equilibrium point, which is evident from Figs. 12–14 and the corre-
sponding phase portrait shown in Fig. 15.

Figs. 1-4 represents time series evolution of prey in zone-1, prey in
zone-2 and predator, phase portrait of species of the system. Figs. 5-6
represent that supercritical bifurcation exists for the parameter and
corresponding phase portrait. Figs. 7-8 represent convergence of the co-
existence equilibrium point by considering a delay in the system, with
corresponding phase portrait of the system. Figs. 9-11 represent bi-
furcation diagrams of prey in zone-1, prey in zone-2, predator species
with =τ 8.5. Figs. 12–14 represent bifurcation diagrams of prey in
zone-1, prey in zone-2, predator species with =τ 10.64. Fig. 15 shows
the phase portrait diagram.

9. Concluding remarks

In this paper, the authors consider a differential algebraic bio-eco-
logical model with a time delay, and the dynamical behaviour of the
model system is developed in the presence of two patchy environments
for population under the influence of environmental factor noise also.

In the above segments, the proposed structure is studied under the
delay constraint, Hopf bifurcation analysis and behavioural analysis
with stochastic approach. If the value <a 0.751 , then the system is
observed as stable, if >a 0.751 the system exhibits oscillatory behaviour
and hence the system is observed as unstable. Similarly when

< <a1.5 2.52 and <a 2.52 , the system shows periodic oscillatory be-
haviour and hence the system is unstable.

The overall study of the current work is initially focused on a de-
terministic approach, and in later segments, special focus on delay and
stochastic analysis played major role in our theoretical study as well as
in the numerical illustrations. On the other hand, the model may show
rich dynamics by considering a spatiotemporal system of equations and
its dynamics. The future scope of the current research problem may
include simulation of a spatiotemporal model to analyse its dynamics.

Ethical statement

This paper is followed the ethical of journal procedure

Conflicts of interest

We don't have any conflict to publish our article in Informatics in
Medicine Unlocked

Acknowledgment

This research was supported by S.A Engineering College, Chennai
and VIT University, Vellore. We thank our colleagues from who pro-
vided insight and expertise that greatly assisted the research of this
paper.

References

[1] Lotka AJ. Elements of physical biology. Baltimore, New York: Williams and Wilkins;
1925.

[2] Volterra V. Lecons sun la theoriemathematique de la lutte pour la vie. Paris:
Gauthier - Villars; 1927.

[3] Kuang Y. Basic properties of mathematicalmodels. USA: Arizona state university;
2002.

[4] May RM. Stability and complexity in model ecosystems. Princeton: Princeton
University Press; 1973.

[5] Hassell MP. The dynamics of arthropod predator-prey systems. Princeton: Princeton
University Press; 1978.

[6] Crawley MJ, editor. Natural enemies: the population biology of predators, parasites
and diseases. London: Blackwell Scientific; 1992.

[7] Muller LD, Joshi A. Stability in model populations. Princeton: Princeton University
Press; 2000.

[8] Dubey B, Hussain J. A model for the allelopathic effect on two competing species.
Ecol Model 2000;129(2–3):195–207.

[9] Korenevskii DH. The stability of solutions to the system of differential equations
with coefficients perturbed by white noise and coloured Noises.IM of NASU. 2012.
Kiev. (in Russian).

[10] Bandyopadhyay M, Chakrabarti CG. Deterministicand stochastic analysis of a non-
linear prey–predator system. J Biol Syst 2003;11:161–72.

[11] Maiti A, Samanta GP. Deterministic and stochastic analysis of a prey–dependent
predator–prey system. Int J Math Educ Sci Technol 2005;36:65–83.

[12] Kar TK, Matsuda H. Controllability of a harvested prey–predator system with time
delay. J Biol Syst 2006;14(2):243–54.

[13] Kar TK, Pahari UK. Modelling and analysis of a prey–predator system with stage-
structure and harvesting. Nonlinear analysis: real World Applications, vol. 8. 2007.
p. 601–9.

[14] Feng W. Dynamics in 3-species predator–prey models with time delays. Discrete and
Continuous Dynamical Systems Supplement. 2007. p. 364–72.

[15] Tang GM. Coexistence region and global dynamics of a harvested predator–prey
system. SIAM J Appl Math 1998;58:193–210.

[16] Myerscough MR, Gray BF, Hogarth WL, Norbury J. An analysis of an ordinary
differential equation model for a two-species predator–prey system with harvesting
and stocking. J Math Biol 1992;30:389–411.

[17] Zhang X, Zhang Q, Zhang Y. Bifurcations of a class of singular biological economic
models. Chaos Solitons and Fractals 2009;40(3):1309–18.

[18] Berryman AA. The origin and evolution of predator–prey theory. Ecology
1992;75:1530–5.

[19] Kar TK. Selective harvesting in a prey–predator fishery with time delay. Math
Comput Model 2003;38:449–58.

[20] Martin A, Ruan S. Predator-prey models with delay and prey harvesting. J Math Biol
2001;43:247–67.

[21] Toaha S, Hassan MA. Stability analysis of predator–prey population model with
time delay and constant rate of harvesting. Journal of Mathematics 2008;40:37–48.

[22] Kar TK, Chakraborty K. Bioeconomic modelling of a prey predator system using
differential algebraic equations. International Journal of Engineering. Sci Technol
2010;2(1):13–34.

[23] Agarwal M, Pathak R. Role of additional food to common predator on dynamics of
two competing preys. International Journal of Applied Mathematics
2013;28(1):1145–71.

[24] Agarwal M, Pathak R. Influence of non-selective harvesting and prey reserve ca-
pacity on prey-predator dynamics. Int J Math Trends Technol 2013;4(11):295–309.

[25] Bera SP, Maiti A, Samanta GP. Stochasticanalysis of a prey–predator model with
herd behaviour of prey. Nonlinear Anal Model Contr 2016;21(3):345–61.

[26] Gakkahar Sunita, Kamel Naji Raid. Existence of chaos in two-prey, one-predator
system. Chaos, Solit Fractals 2003;17(4):639–49.

[27] Kar TK, Chaudhuri KS. Regulation of a prey-predator fishery by taxation: a dynamic
reaction model. J Biol Syst 2003;11:173.

V. Madhusudanan et al. Informatics in Medicine Unlocked xxx (xxxx) xxx–xxx

9

http://refhub.elsevier.com/S2352-9148(18)30091-1/sref1
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref1
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref2
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref2
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref3
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref3
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref4
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref4
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref5
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref5
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref6
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref6
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref7
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref7
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref8
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref8
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref9
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref9
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref9
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref10
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref10
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref11
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref11
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref12
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref12
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref13
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref13
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref13
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref14
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref14
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref15
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref15
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref16
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref16
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref16
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref17
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref17
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref18
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref18
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref19
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref19
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref20
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref20
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref21
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref21
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref22
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref22
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref22
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref23
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref23
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref23
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref24
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref24
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref25
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref25
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref26
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref26
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref27
http://refhub.elsevier.com/S2352-9148(18)30091-1/sref27

	Influence of predator standby capacity, harvesting and noise on a two patchy aquatic delayed eco system with migration of prey
	Introduction
	Mathematical model and its qualitative role play
	Boundedness of the solution
	Existence of equilibrium points with feasible condition
	Stability analysis for positive interior steady state point
	Delay analysis
	Hopf bifurcation role play
	Stochasticity role play
	Numerical simulations
	Concluding remarks
	Ethical statement
	Conflicts of interest
	Acknowledgment
	References




