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Abstract: Lightweight cryptographic solutions are required to guarantee the security of Internet of
Things (IoT) pervasiveness. Cryptographic primitives mandate a non-linear operation. The design
of a lightweight, secure, non-linear 4 × 4 substitution box (S-box) suited to Internet of Things (IoT)
applications is proposed in this work. The structure of the 4 × 4 S-box is devised in the finite fields
GF (24) and GF ((22)2). The finite field S-box is realized by multiplicative inversion followed by
an affine transformation. The multiplicative inverse architecture employs Euclidean algorithm for
inversion in the composite field GF ((22)2). The affine transformation is carried out in the field GF (24).
The isomorphic mapping between the fields GF (24) and GF ((22)2) is based on the primitive element
in the higher order field GF (24). The recommended finite field S-box architecture is combinational
and enables sub-pipelining. The linear and differential cryptanalysis validates that the proposed
S-box is within the maximal security bound. It is observed that there is 86.5% lesser gate count for
the realization of sub field operations in the composite field GF ((22)2) compared to the GF (24) field.
In the PRESENT lightweight cipher structure with the basic loop architecture, the proposed S-box
demonstrates 5% reduction in the gate equivalent area over the look-up-table-based S-box with TSMC
180 nm technology.
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1. Introduction

Cryptography paves the way for the realization of security in the information technology era.
Lightweight cryptographic algorithms are in immense demand in the present decade for Internet of
Things (IoT) applications. Industrial IoT systems are ubiquitous in nature and have widespread access
through smart devices. They are strictly resource-constrained, and lightweight security solutions are
the most suitable option for the security of such systems. The traditional security algorithms, such as
Advanced Encryption Standard (AES), are not suitable for IoT devices due to their intense mathematical
operations, which are computationally expensive. IoT physical security concerns emphasize the
resource constraints and the level of security to be addressed by the lightweight cryptographic
algorithms and lightweight cryptographic primitives [1–6]. The necessity of lightweight ciphers
with compact implementation of the non-linear S-box to realize the practical IoT is addressed in [7–9].
The optimal linear and differential cryptanalysis resistance of the lightweight S-box is also analyzed as
a major factor. Trends in the lightweight cipher design for IoT are based on two factors: the choice
of the non-linear operation and the key schedule [10]. The non-linear operation is mandatory in any
cryptographic primitive. The primary non-linear operation in the cryptographic algorithms is the S-box.
This work contributes to the finite field hardware design of the combinational, lightweight, optimal
S-box suited to IoT devices. An S-box in a finite field is an inversion followed by affine transformation.

The proposed S-box is lightweight in terms of having a smaller number of gates and has adequate
security properties, as discussed in the latter sections. The combinational design of the proposed
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lightweight S-box offers hardware advantages—namely compactness in terms of a smaller number
of gates—enables sub-pipelining to improve performance optimization and also enables masking
mechanisms to counteract side channel attacks [11]. Hardware implementations of the symmetric
cryptographic algorithms have been widely explored in the literature [12–17]. However, they report
the bare minimal focus on the architectural design of the different symmetric lightweight security
ciphers. All the lightweight ciphers defined so far have only look-up table-based S-boxes, which have
their own limitations in hardware [18–25].

Sufficient background on the derivation of the hardware structures in the finite fields is given
in [26–30]. The finite field design involves the design of the operations in varied sub fields.
The isomorphism between the fields and the methods for those transformations has been explained
in [31–33]. Reference [34] discusses the properties of affine equivalence in AES. Literature to date
on lightweight cipher algorithm implementations has concentrated on the gate equivalents in ASIC
implementations and RAM-based Field Programmable Gate Array (FPGA) implementations [35–39].
A Boolean S-box using the Karnaugh map and the factorization technique has been designed to achieve
a maximum throughput of 51.32 Mbps for the PRESENT cipher architecture for an 8-bit data path [40].
To the best of the knowledge of the authors, this work is the first attempt at the construction of a finite
field hardware style for the 4 × 4 S-box.

The rest of the paper is organized as follows: Section 2 reiterates the properties of the optimal
S-box. Section 3 explains the design methodology of the proposed work. Section 4 elaborates the
construction of the fields, followed by the multiplicative inversion derivation in the composite field
in Section 5. Section 6 focuses on the isomorphism between the fields GF (24) and GF ((22)2), and
the description of the involved affine transformation is given in Section 7. The proposed hardware
structure for the S-box and its implementation are shown in Sections 8 and 9, respectively. The security
analyses of the proposed S-box are presented in Section 10. Section 11 concludes the paper.

2. Properties of the Optimal S-Box

The security of IoT devices needs lightweight cryptographic primitives and they deploy 4 × 4
S-boxes in their cipher definition. The selection of the S-box in the lightweight block ciphers plays
an important role in characterizing its security–performance trade-off. The choice of the 4 × 4 S-box
for the lightweight constructions results in compact hardware, unlike the 8 × 8 S-box used in the
AES. A high volume of the lightweight ciphers and hash functions, namely, PRESENT, RECTANGLE,
SPONGENT, ICEBERG, SERPENT, NOEKEON, PRINT and PRINCE, have the 4 × 4 S-box in their
structure [41]. The improved hardware performance with fixed level of security margin is attained
by the optimal S-box constructions. Let the 4 × 4 bijective S-box be denoted by S in the field F4

2 .
The conditions to be satisfied for the S-box to be optimal are

(1) Bijective, i.e., S(x) 6= S(x′) for any x 6= x′.
(2) Let the difference XOR propagation between the input XOR values (∆I) and the output XOR

values (∆O) be given by NDs (∆I, ∆O) = #{x ∈ F4
2 |S(x) ⊕ S (x ⊕ ∆I) = ∆O}; it should be ≤4.

(3) The differential uniformity: i.e., the diffusion of the S-box is given by the
max∆I 6=0,∆O|NDs (∆I, ∆O)|.

(4) Let the linear imbalance of the S-box be denoted by Imbs (ΓI, ΓO) = #{x ∈ F4
2 |ΓI .x = ΓO.

S(x)} − 8|: it should be ≤4, where ΓI and ΓO are the input and output masks of the S-box
linear approximation and “.” is the inner product on F4

2 .
(5) The linearity of the S-box is given by the maxΓI,ΓO 6=0|NDs(∆I, ∆O)|.
(6) No fixed point, i.e., S(x) 6= x for any F4

2 .

S-boxes that satisfy these values are said to be optimal S-boxes [42–44]. The smaller the value of
diffusion of the S-box, the more secure the S-box is against differential cryptanalysis. Similarly, the
smaller the value of linearity of the S-box, the more secure the S-box is against linear cryptanalysis.
For an S-box, the number of times that a 1-bit input difference causes a 1-bit output difference and
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the number of times that a 1-bit input selection pattern causes a 1-bit output selection pattern also
determines the differential and linear cryptanalysis resistance of the 4-bit S-boxes.

3. Design Methodology

The finite field theory specifies the mathematical operations in terms of logic gates. The design
methodology employs the finite fields in a polynomial basis for the hardware definition of the
4 × 4 S-box. The multiplicative inverse is derived in the composite field, resulting in less hardware
complexity. The steps involved in the S-box design are elucidated as follows and are shown in Figure 1.

(1) The construction of the field GF (2nm=4) in the polynomial basis using the irreducible primitive
polynomial of degree 4.

(2) The construction of the composite field GF ((2n=2)m=2) in the polynomial basis using the
respective bases.

(3) Derivation of the multiplicative inverse structure in the composite field GF ((2n=2)m=2) using the
Euclidean algorithm. The multiplicative inversion involves the subfields GF (2), GF ((2n=2)m=2)
and GF (2nm=4).

(4) The isomorphic transformation of the sub fields based on the primitive element of the higher
order field.

(5) The affine transformation in the field GF (2nm=4).
(6) Validation of the proposed S-box structure through the physical implementation of the proposed

S-box in the one of the lightweight cipher algorithms, PRESENT, and estimation of its
hardware performance.

(7) Security analysis of the proposed S-box structure to prove its security strength.
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4. Construction of the Fields

The field GF (24) is constructed with the irreducible polynomial of degree 4 in the polynomial
basis. There are three irreducible polynomials of degree 4:

r1(x) = x4 + x + 1 (1)

r2(x) = x4 + x3 + 1 (2)

r3(x) = x4 + x3 + x2 + x + 1 (3)

A primitive irreducible polynomial generates all the unique 24 = 16 elements of the field GF
(24). However, the non-primitive polynomial will not generate all the 16 unique elements. Both the
primitive polynomials r1(x) and r2(x) are applicable for the GF (24) field generation. The polynomial
r3(x) is a non-primitive polynomial. The proposed work generates the field based on the polynomial
r1(x). The composite field GF ((2n=2)m=2) is also constructed using the polynomial basis. The process
involved in the construction of the composite field GF ((22)2) for the realization of the 4 × 4 S-box
employs the following three polynomial bases: B1, B2 and B3.

B1: The binary extension field employed is the GF (24), and is defined over the prime field GF (2). If α
is a root of p(x), then the set B1 = {1,α,α2,α3} forms the basis for the field GF (24). Any element A in
GF(24) can be expressed as A = ∑3

i=0 aiα
i, where ai ε GF(2) for i = 0 to 3. The row vector (a0, a1, a2, a3)

is called the representation of the element A in the basis B1. This is the polynomial basis for the
representation of the field GF (24) over GF (2).

B2: The irreducible polynomial q(x) of degree m = 2 defined over GF (22) has root β. Then, the set
B2 = {1,β} is the basis of GF ((22)2). Any element in the basis B2 can be expressed as A = ∑1

i=0 a′iβ
i,

where a′i ε GF(22) for i = 0, 1. The row vector (a′0, a′1) is called the composite field representation of
the element A in the basis B2. The coefficients in the composite field representation are in the ground
field GF (22).

B3: The irreducible polynomial v(x) of degree n = 2 over GF (2) constructs the ground field GF (22)
with a root γ and the basis B3. Therefore, any element a ε GF (22) can be written as a = ∑1

i=0 a′i γ
i,

where a′i ε GF (2). The row vector (a′′0 , a′′1 ) represents the element a ε GF (22), in the basis B3.

The representations of the different bases involved in the composite field construction are
expressed below.

B1 : p(x) = x4 + x + 1 in GF (24)/GF (2) (4)

B2 : q(x) = x2 + x +∅ in GF ((22)
2
)/GF (22),∅ = 102 (5)

B3 : v(x) = x2 + x + 1 in GF (22 )/GF (2) (6)

The field GF (22) has only one irreducible polynomial of degree 2. The field GF ((22)
2
) is

irreducible with the polynomial of the form q(x) with the possible value of ∅ = 102 in GF (2).
The derivation of the multiplicative inverse structure in the composite field GF ((22)

2
) is detailed in

the next section.

5. Multiplicative Inverse in the Composite Field

The multiplicative inversion and its efficient hardware implementation are the key elements in the
structural realization of the S-box. The inversion is calculated using the extended Euclidean algorithm.
The multiplicative inverse in the higher order field domain is more complex, and hence the lower
order composite field is preferred, with all the arithmetic operations performed in the lower domain.
The composite field GF ((22)2) with the suitable values of n = 2 and m = 2, for k = 2 × 2 = 4, is generated
based on the respective degree field polynomials.
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The multiplicative inverse in the composite field is realized by the following steps:

(1) Isomorphic transformation from the higher order field representation GF (24) to the lower order

composite field representation GF ((22)
2
).

(2) Multiplicative inversion in the composite field GF ((22)
2
) using the Euclidean theorem.

(3) Inverse isomorphic transformation of the result obtained by the multiplicative inverse, to the
higher order field GF (24).

6. Isomorphism and Field Polynomials

The calculation of the multiplicative inverse in the lower field GF ((22)
2 offers an advantage as

discussed in Section 3. The computation of inverse in the composite field cannot be applied directly in
GF (24). Therefore, every element needs to be mapped to its composite field representation GF ((22)

2
)

via isomorphic mapping and vice versa. Such an isomorphism provides the conversion of the field
representations. The derivations of the conversion matrix to establish the isomorphism between the
fields is evaluated through any one of the two mechanisms mentioned below:

(1) Construction of the conversion matrix between GF (24) and GF ((22 )
2
), where the generation

polynomials are known a priori through an exhaustive search method.
(2) Construction of the conversion matrix, in which the generator polynomial is not known a priori

nor fixed. In this field conversion, the isomorphism between the fields is derived based on the
primitive or the non-primitive polynomials. The primitive elements of the irreducible polynomials
are the key for the isomorphic transformations in this technique.

This work employs the primitive element method for its isomorphism. The manipulations
involved for the base representations, the minimal polynomials involved and the conversion
mechanism are explained in the following sub sections.

6.1. Minimal Polynomials for the Composite Field Conversion

The two different fields, namely GF (24) over GF (2), and GF ((22)
2
) over GF (22), have the

following minimal polynomials:

(1) With n = 2 and m = 2, the composite field GF ((22)
2
) is constructed with GF (22) as the ground

field. The minimal polynomial of α for the composite field GF ((22)
2
) construction is given as

mα(x) = (x + α)(x + α4) (7)

The polynomial mα(x) is an irreducible polynomial of degree 2 with coefficients in GF (22).
The subfield is GF (22). The operation in the field is performed in GF ((22)

2
) over GF (22).

(2) The minimal polynomial of α for the field GF (24) over GF (2) construction is given as

m′α(x) = (x + α)(x + α2)(x + α4)(x + α8) (8)

The polynomial m′α(x) is an irreducible polynomial of degree 4 with coefficients in GF (2).
The primitive polynomial used for the field construction is a polynomial of degree k = 4(nm),
whose coefficients are in GF (2).

6.2. Evaluation of the Conversion Matrix

The conversion from the composite field representation to the binary representation based on
the primitive elements is explained below. The primitive polynomial involved in the construction of
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GF (24) with root α is given by p(x) = x4 + x+ 1 and α is a primitive element in GF (24). The elements
A in GF (24) in basis B1 is given by

A = a0 + a1α+ a2α
2 + a3α

3 (9)

The primitive element for the composite field construction α5 is expressed in the ground field
GF (22). The irreducible polynomial used to construct GF ((22)

2
) over GF (22) is given by as

mα(x) = (x + α)(x + α4) and it is of degree 2 with the coefficients from the ground field GF (22).
The reduction of the polynomial as mα(x) = (x + α)(x + α4) evaluate to the form as given below.

mα(x) = x2 + (α+ α4)x + α5 (10)

where α is in GF (24).
The elements of A in the field in basis 2 can be written as ∑m−1

j=0 aj
′ αj, where aj

′ ∈ GF (22). Using

γ = α5 as the primitive element, the a′j can be expressed as a′j = aj0 + aj1γ.
Substituting this expression for aj

′, the elements of A are arrived at as given below.

A = a00 + a01 α
5 + a10 α+ a11 α

6 (11)

Reducing this using p(x) = x4 + x + 1, the element can now be expressed as

A = a00 + (a01 + a10)α+ (a01 + a11)α
2 + a11α

3 (12)

Comparison of the elements on the basis B1 and B2, the following equations relating the
coefficients can be derived as follows:

a0 = a00 (13)

a1 = a01 + a10 (14)

a2 = a01 + a11 (15)

a3 = a11 (16)

Based on relations (13) to (16) cited above, the conversion matrix from the binary field to the
composite field and vice versa are shown below.

Conversion matrix from GF (24) to GF ((22)
2
)

1 0 0 0
1 1 1 0
1 1 0 0
0 0 0 1

 (17)

Conversion matrix from GF ((22)
2
) to GF (24)

1 0 0 0
1 0 1 0
0 1 1 0
0 0 0 1

 (18)

The discussions made so far pertained to the processes involved in finding the multiplicative
inverse and the necessary isomorphic transformations between the different fields. The affine
transformation chosen for the S-box is explained in Section 7.
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7. Affine Transformation

The affine transformation resists interpolation attacks and wraps algebraic manipulations so that
it is less vulnerable to such attacks. An appropriate affine transform resists the interpolation attacks
without causing damage to the resistance of the linear and differential cryptanalysis properties of the
multiplicative inverse operation. The affine transformation is a scaling operation followed by addition
with an affine constant. The affine and inverse transformations are given by

y = b + ax (19)

x = a−1y + a−1b, (20)

where ‘a’ and ‘a−1’ are 4 × 4 matrices and ‘b’ is a 4 × 1 matrix.
The expression for the affine transformation and the inverse affine transformation are represented

in Equations (21) and (22) respectively.

Affine Transform =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1




a3
a2
a1
a0

 ⊕ [ 0 1 1 1 ] (21)

Inverse Affine =


1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




a3
a2
a1
a0

 ⊕ [ 1 1 1 0 ] (22)

The hardware structures of the affine transformation are also implemented based on the finite
field arithmetic. All the related composite field arithmetic operations and the hardware realization of
the individual substructures for implementation of inversion in the field GF ((22)

2
) are discussed in

Section 8.

8. Overall S-Box Structure and Substructures

This section presents the overall structure of the proposed 4× 4 S-box. Figure 2 depicts the overall
structure in the field derived using the Euclidean approach. The structure of the sub operations in the
field GF ((22)

2
) are shown in Figures 3–5. Note that, in the finite field, all the arithmetic operations are

expressed in terms of the AND and XOR gates. Table 1 lists the symbols employed for each of these
operation involved in the structure.
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Figure 5. Multiply with constant ∅ = 102. The constant multiplier employs only a single XOR gate in
GF((22)

2
).

Table 1. Symbolic representation of the substructures.

Symbol Operation

x2 Squaring operation in GF ((22)
2
)

X Multiplication in GF ((22)
2
)

Xø Multiplication with constant in GF ((22)
2
)

⊕ Bitwise addition in GF ((22)
2
)

X−1 Inversion in Fermat’s with m = 2
δ Isomorphism from GF (24) to GF ((22)

2
)

δ−1 Inverse isomorphism from GF ((22)
2
) to GF (24)

→ Affine transformation in GF (24)

The multiplicative inversion operations are defined in the field GF ((22)
2
) and the field isomorphism and the affine

transformation are defined in the field GF (24).

9. Hardware Performance in Block Ciphers

The proposed S-box is depicted in Table 2. The gate counts required for the individual sub
operations in the composite field GF ((22)

2
) and GF (24) are shown in Table 3. To demonstrate

the efficiency of the proposed S-box in the block cipher hardware, the same is replaced in the
substitution operation of the PRESENT cipher definition, and the performance results are given
in Table 4. Performance estimation is done in terms of comparison of the gate equivalent (GE) area with
the existing lightweight cipher ASIC implementations. It can be observed that the structure with the
proposed S-box exhibits a smaller GE area compared to the look-up-table-based S-box implementation
in the PRESENT cipher.
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Table 2. Proposed S-box.

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 7 E F 0 D B 8 1 9 3 4 C 2 5 A 6

Table 3. Individual gate counts of the substructures in GF ((22)
2
) and GF (24).

Operations GF ((22)2) [PROPOSED] GF (24)

Squaring 1 XOR 4 XOR
Multiplication with constant 1 XOR (×∅) 3 XOR (×λ)

Multiplication 4 XOR + 3 AND 21 XOR + 9 AND

Table 4. Comparisons of the related works.

Reference Work Block Size Key Size Cycles per Block Logic Process Area (GE)

PRESENT-80 [31] 64 80 32 0.18 µm 1570
PRESENT-128 [45] 128 128 32 0.18 µm 1884

CLEFIA [46] 128 128 36 0.09 µm 4950
CLEFIA [47] 128 128 18 0.09 µm 5979

AES [46] 128 128 11 0.13 µm 12,454
AES [46] 128 128 54 0.13 µm 5398

PRESENT-80 [Proposed] 64 80 32 0.18 µm 1486

Area (gate equivalent (GE)) is given in terms of equivalent two-input NAND gates.

Note that the proposed S-box is applicable to any of the ciphers which employ a 4-bit substitution
definition. The non-look-up-table-based S-box structure has the added advantage of further sub
pipelining mechanisms to improve the throughput. The PRESENT basic loop architecture with the
proposed S-box is specified in the VERILOG HDL and is implemented using the TSMC 0.18 µm
standard cell library. The Cadence® nclaunch simulator has been used for the functional simulation.
The PRESENT cipher with a block length of 64 bits and key length of 80 bits were chosen for the
implementation. Reduction of gate count for the sub field operations is observed to be 86.5% in the
composite field GF ((22)

2
) compared to the field GF (24). A 5% lesser gate equivalent area is arrived

at with the proposed S-box in the PRESENT lightweight cipher loop architecture in comparison with
the look-up-table-based S-box in the same architecture. The security analysis of the impact of the S-box
in the lightweight block ciphers has displayed satisfactory performance results and is explained as
pertaining to security analysis in the following section.

10. Security Analysis

The characteristics of the S-box should resist linear and differential cryptanalysis. The linearity
and the diffusion of the S-box reflect its strength with respect to the linear and differential
cryptanalysis. The proposed substitution has the security characteristics that resist both the linear and
differential cryptanalysis.

10.1. Linear Cryptanalysis

Linear cryptanalysis is a chosen plaintext attack that captures the highly probable linear
relationship between the input plain texts and the resultant cipher texts. The proposed optimal
S-box has a linearity of 4, as noted from the linear approximation structure in Table 5.
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Table 5. Linear approximation table of the proposed S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −4 0 4 2 −2 2 −2 2 2 2 2
2 0 4 2 2 0 0 2 −2 0 0 2 −2 0 −4 2 2
3 0 0 −2 2 0 0 −2 2 −2 −2 4 0 −2 −2 −4 0
4 0 0 0 −4 2 −2 −2 2 0 0 0 −4 −2 −2 2 −2
5 0 4 0 0 2 2 −2 2 −2 −2 −2 2 4 0 0 0
6 0 0 2 2 −2 2 −4 0 0 4 2 −2 2 2 0 0
7 0 0 −2 −2 −2 −2 0 0 2 2 0 0 4 −4 −2 −2
8 0 2 0 −2 0 −2 −4 −2 2 0 −2 0 −2 0 −2 4
9 0 2 0 −2 4 −2 0 −2 0 2 4 2 0 2 0 −2
A 0 −2 2 0 4 2 2 0 2 0 0 −2 2 0 −4 2
B 0 2 −2 0 0 −2 2 0 −4 2 −2 −4 0 2 −2 0
C 0 −2 4 2 2 −4 −2 0 −2 0 −2 0 0 −2 0 −2
D 0 2 4 −2 −2 0 2 4 0 2 0 2 −2 0 −2 0
E 0 −2 −2 0 2 0 0 2 −2 4 0 2 0 −2 2 4
F 0 −2 2 −4 −2 0 0 −2 −4 −2 2 0 2 0 0 2

The high probability linear approximation over the number of rounds will exploit the secret
information without any knowledge of the intermediate values. The linear approximation of the only
non-linear component in the cipher structure, i.e., the S-box over the rounds, will be concatenated
using the pilling-up lemma in order to calculate the upper bound of linearity. The maximal bound is
proportional to the number of active S-boxes in each of the rounds. The more the number of active
S-boxes in each round, the better is the linear cryptanalysis resistance. In order to determine the
maximal bound, the worst scenario of one active S-box in each round is taken into consideration.
The r − 1 linear approximation probability is given as follows:

|εí| ≤ 2r−2 |εs|r−1 = 2−32 (23)

Here, |εs| represents the maximum linear approximation probability bias of the S-box and
is 2−2 for the proposed optimal S-box. The value of r = 32 is the number of rounds of the cipher.
The number of plain texts required to perform the linear cryptanalysis is proportional to 1/ε l2. Hence,
264 plaintexts are required, which is not practically possible. Note that the analysis has been done for
the upper bound of one active S-box per round as indicated above, and hence the proposed S-box
in the cipher provides better linear cryptanalysis resistance as the S-box in the existing lightweight
block ciphers.

10.2. Differential Cryptanalysis

Differential cryptanalysis is also a chosen plain text attack, which focuses the high differential
probability between the plain texts and cipher texts. The difference distribution table shows the XOR
profile of the S-boxes which demands diffusion in its distribution of the input XOR profile, with respect
to the output XOR profile. The proposed optimal S-box has a diffusion of 4 as seen from the difference
distribution table in Table 6.
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Table 6. Difference distribution table of the proposed S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 2 2 4 2 0 2 0 0 2
2 0 0 0 2 0 2 0 0 4 0 2 0 0 2 2 2
3 0 2 0 2 2 2 0 4 0 0 0 0 2 0 0 2
4 0 2 0 0 0 2 2 2 0 0 4 2 0 0 2 0
5 0 2 2 2 0 0 2 0 2 0 0 0 4 0 2 0
6 0 0 2 2 0 2 2 0 0 2 0 2 0 0 0 4
7 0 2 0 0 2 0 4 0 0 2 0 0 0 2 2 2
8 0 0 2 0 0 0 0 2 0 0 0 2 2 2 4 2
9 0 0 0 2 4 0 0 2 2 2 0 2 0 0 2 0
A 0 0 2 4 2 0 0 2 0 0 2 0 0 2 0 0
B 0 2 0 2 0 0 0 0 0 2 2 4 2 2 0 0
C 0 0 0 0 2 4 2 0 2 0 0 2 2 2 0 0
D 0 0 4 0 2 2 0 0 0 2 2 0 2 0 2 0
E 0 2 2 0 0 2 0 2 2 2 0 0 0 4 0 0
F 0 4 2 0 2 0 0 0 2 0 2 2 0 0 0 2

In addition to the linearity property and the linear cryptanalysis resistance, the diffusion and the
differential cryptanalysis resistance of the S-box in the cipher needs to be to known to estimate the
security margin. The maximal differential bound is estimated by the high differential characteristic
probability and the number of active S-boxes involved in each round of the cipher. The maximal
differential characteristic probability of the proposed optimal S-box is 2−2. The upper bound on the
complexity of the attack is evaluated by considering one active S-box in each round. With one active
S-box per round, the expression for the differential characteristic of the cipher with the number of
rounds r = 32 are given by

|2−2|r−1 = 2−62 (24)

The complexity of the attack is inversely proportional to the differential characteristic probability
and is equal to 262. Such a value offers a reasonable limit on the upper bound of the differential
characteristic. Hence, the proposed S-box in the cipher offers a sufficient margin of differential
cryptanalysis resistance.

11. Conclusions

The primary objective of this work is to design a lightweight, secure optimal S-box that suits IoT
applications. The combinational architecture in the finite field for the hardware implementation of
the 4 × 4 S-box is presented. The motive for the combinational S-box design is to pave the way for
additional optimization mechanisms, namely sub pipelining in the S-box structure. Such hardware
optimization is infeasible with the traditional look-up-table-based S-box structure. The choice
of the finite field for the hardware design yields all operations: namely multiplication, addition,
multiplication with a constant, affine transformation and isomorphic mapping in terms of the logical
AND and XOR gates. The hardware structure for the realization of the 4 × 4 S-box has been carried
out through extensive mathematical derivations and exploitation of the linear algebra and the finite
field theory. The validation of the derived structure is done through the incorporation of the S-box
structure in the PRESENT block cipher with the TSMC 0.18 µm technology. The composite field GF
((22)2) based architecture shows less hardware complexity and a reduced gate count compared to its
counterpart GF (24). Furthermore, the security analysis of the designed S-box proves its resistance to
the linear and differential cryptanalysis.

The research presented in the paper provides further scope for improving the S-box architecture
based on the requirements, the implementation choices, the optimization mechanisms and the
algorithms employed.
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