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Abstract

A pandemic is an epidemic spread over a huge geographical area. COVID-19 is 5th such pandemic documented after 1918 
flu pandemic. In this work, we frame a mathematical epidemic model taking inspiration from the classic SIR model and 
develop a compartmental model with ten compartments to study the coronavirus dynamics in India and three of its most 
affected states, namely, Maharashtra, Karnataka, and Tamil Nadu, with inclusion of factors related to face mask efficacy, 
contact tracing, and testing along with quarantine and isolation. We fit the developed model and estimate optimum values of 
disease transmission rate, detection rate of undetected asymptomatic, and the same of undetected symptomatic. A sensitivity 
analysis is presented stressing on the importance of higher face mask usage, rapid testing, and contact tracing for curbing the 
disease spread. An optimal control analysis is performed with two control parameters to study the increase and decrease of 
the infected population with and without control. This study suggests that improved and rapid testing will help in identifying 
more infectives, thereby contributing in the decline of disease transmission rate. Optimal control analysis results on stressing 
on the importance of abiding by strict usage of face mask and social distancing for drastic decrease in number of infections. 
Time series behaviour of the symptomatic, asymptomatic, and hospitalized population is studied for a range of parameters, 
resulting in thorough understanding of significance of different parameters.

Keywords COVID-19 · Stability analysis · Sensitivity analysis · Optimal control · Testing and detection

Introduction

Novel Coronavirus, taxonomically termed as SARS-CoV-2, 
and COVID-19 by WHO, first emerged in Wuhan, Hubei 
Province in China Zhu et al. (2020) in late 2019. On 11th 
March 2020, this infectious disease was declared a pan-
demic by the World Health Organization. As on 13th 
February 2021, 107,838,255 confirmed cases have been 
reported worldwide, of which 2373,398 deaths have been 
reported by the https:// covid 19. who. int/. COVID-19 is the 
fifth documented pandemic since the 1918 flu pandemic. 
This deadly disease is highly contagious, transmitting from 
human to human, and spreading at an alarming rate. As per 
reports from https:// www. who. int/ health- topics/ coron avirus, 

human-to-human transmission of this virus occurs through 
nasal discharge as well as saliva droplets when an infected 
person happens to sneeze or cough. This is also supported by 
the studies in Ferguson et al. (2020); Nicola et al. (2020), in 
which the novel coronavirus is compared to respiratory virus 
which spreads via airborne transmission. This virus is more 
likely to spread in regions which lack sanitation, ventilation 
Liu and Zhang (2020), and no usage of face shields. The 
virus can get inside body through contaminated hands that 
touch eyes, mouth, and nasal areas.

Control measure namely face mask and social distancing 
are considered to examine their impact on the dynamics of 
the disease, which is studied in detail in Okuonghae and 
Omame (2020). In Chu et al. (2020), the authors have done 
a metanalysis on the effectiveness of physical distancing, 
face mask, and eye protection in minimizing the human-to-
human transmission of the disease. Both works by Eiken-
berry et al. (2020) and Ngonghala et al. (2020) stress on the 
importance of face mask or surgical masks in controlling the 
spread, and the later also suggests that with a higher efficacy 
of 70% or more, the disease could vanish. In Nadim and 
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Chattopadhyay (2020), the authors have found results based 
on imperfect lockdown for countries like Mexico, Argen-
tine, India, and South Africa. They determined that, in case 
of perfect lockdown, there would be a significant reduction 
in daily new COVID-19 cases. Apart from the above-men-
tioned interventions, it is equally important to have a well-
functioning testing drive to tackle this deadly disease. Rapid 
testing and effective contact tracing help in identifying sev-
eral asymptomatic and symptomatic cases, which will hence 
prevent disease transmission after being quarantined. In the 
paper by Ivorra et al. (2020), a new mathematical model �
-SEIHRD model based on Be-CoDis model in Ivorra et al. 
(2015) is proposed. This model considers existence of infec-
tious undetected cases, control measures like sanitary condi-
tions, isolation, quarantine, and tracing. It considers a novel 
method considering fraction of detected cases over actual 
total infected cases, which helps to understand the impact 
of COVID-19. In Zhang et al. (2021), it is clearly concluded 
that the spread of the disease could be controlled through 
effective contact tracing and by increasing the detection rates 
and quarantine of the individuals infectious to others.

In India, the first COVID-19 case was reported on Janu-
ary 30, 2020. To analyze the impact and transmission rate 
with and without interventions, scientific research towards 
combating this disease is very crucial to estimate the rise 
in cases, recoveries, and death. Several studies have been 
done since the mark of this disease and several works have 
been published worldwide. Mathematical modeling has 
played a crucial role in response to this pandemic, provid-
ing estimate on basic reproduction number across regions, 
analysis based on interventions included in the compartment 
models, quantifying disease severity, and so on. Most of 
the works are inspired by the compartment model SIR Ker-
mack and McKendrick (1927), which is then extended to 
different epidemiological models for COVID-19. In Anirudh 
(2020), a brief study is done on prediction of COVID-19, its 
rise, spread, and reduction by giving description of differ-
ent mathematical models, namely, SIR, SEIR, SEIRU,SIRD, 
SLIAR, ARIMA, SIDARTHE, etc., describing the differ-
ent challenges and the outcomes obtained. In Meehan et al. 
(2020), authors have provided a brief history of this deadly 
pandemic, transmission of the disease with and without 
interventions and certain limitations associated with math-
ematical modeling. From these, it is clear that epidemiologi-
cal models are important tools in public health management 
programmes, though high level of uncertainty persists in 
each of the models. The work by Saeed et al. (2021) provides 
a detailed information on various interventions depending 
on present-day pandemic situation.

In this study, we develop an epidemiological model 
with ten compartments, to study the coronavirus dynamics 
in India and three of its states. We have included natural 
births and deaths in the model. The major highlight of the 

model is that the population is categorized into four classes 
namely asymptomatic, symptomatic, detected, and unde-
tected. Quarantine of the susceptible population, isolation, 
and hospitalization are included as well. The major aim is 
to determine how higher detection rates of asymptomatic 
and symptomatic unidentified individuals help in curbing 
the disease transmission rate. We have also depicted opti-
mal control on this parameter by adding control, such that 
it enhances detection rate and hence reduces the number of 
unidentified infected individuals. In this work, we witness 
how face mask usage and quarantine rate of the susceptible 
help in reducing disease transmission, hence the basic repro-
duction number.

The rest of the paper is comprised of the following sec-
tions: “Model formulation: compartment model based on 
ordinary differential equations Sect. 2” includes a well-
detailed explanation of the model formulation and the dif-
ferent movements taking place between compartments. The 
equilibria and the basic reproduction number are obtained 
in “Analysis of mathematical model Sect. 3” along with the 
local stability analysis of the disease-free and endemic equi-
librium points. The next two sections are numerical simula-
tion and optimal control of the problem. The final sections 
end with conclusion wherein the results and future scope are 
discussed in brief.

Model formulation: compartment model 
based on ordinary differential equations

In this study, the total population (N) is comprised of com-
partments, namely, Susceptible (S), Quarantined Susceptible 
( Sq ), Exposed (E), Infected (I), Isolated/Quarantined ( Hq ), 
Hospitalized (H), and Recovered (R). The Infected com-
partment is further subdivided into four classes, namely, 
Asymptomatic Infected Undetected ( I

an
 ), Detected ( I

ad
 ) and 

Symptomatic Infected Undetected ( I
sn

 ) and Detected ( I
sd

 ). In 
this work, the major focus is on the undetected and detected 
population of the infected, since interventions related to 
these are included for optimal control of the system. Figure 1 
is a schematic representation of entire model flow.

Considering the below-mentioned assumptions, the math-
ematical model is developed. 

 1. In this model, we assume that the individuals are 
recruited at a constant rate ∧ in a specified region.

 2. By means of contact tracing, it is assumed that the 
susceptible individuals are identified and quarantined 
at a movement rate of � , and m

q
 is the rate at which 

quarantined individuals move to susceptible class.
 3. � is the infection rate at which the susceptible move 

to the exposed class. A certain fraction of individuals 
wear face masks and abide by the norms, for which we 



Modeling Earth Systems and Environment 

1 3

include a parameter � which is product of mask effi-
cacy and fraction of population is wearing it. Hence, 
the rate of disease transmission becomes �(1 − �).

 4. p� and (1 − p)� are the rate of movement of individuals 
from exposed class to I

an
 and I

sn
 class respectively.

 5. The asymptomatic undetected individuals recover at 
rate �

1
 . Asymptomatic individuals have possibilities of 

becoming symptomatic, and hence, they move from I
an

 
to I

sn
 at a rate �.

 6. There are chances of the symptomatic undetected indi-
viduals to be not identified hence leading to death, and 
therefore, we assume that these individuals die at a rate 
�

1
.

 7. �
a
 and �

s
 are the rates of detection via contact tracing 

and testing for I
an

 and I
sn

 class, respectively.
 8. The asymptomatic detected individuals I

ad
 are isolated 

at a movement rate of � to the class Hq.
 9. The symptomatic detected individuals I

sd
 who happen 

to be critically ill are hospitalized at a rate � . There are 
possibilities of the symptomatic detected individuals 
to not have severe symptoms, and hence, they move to 
the class Hq at a rate �.

 10. There is a possibility for the individuals under isolation 
to develop complication, and hence, they move to H 
class at a rate �.

 11. The recovery rates of isolated and hospitalized are �
3
 

and �
2
 respectively. �

2
 is the death rate of hospitalized 

individuals. Let � be the natural death rate of the popu-
lation N.

In view of the above, the following mathematical model 
is developed:

Analysis of mathematical model

Positivity and boundedness

The solution set of the system of Eqs. (1)–(10) are bounded 
by ∧

�
 . Hence, biologically feasible region for the system of 

Eqs. (1)–(10) is given by

Equilibrium and basic reproduction number

The disease-free equilibrium of the model represented by 
Eqs. (1)–(10) is given by

(1)
dS

dt
= ∧ −�S − �(Ian + Isn)S(1 − �) + mqSq − �S,

(2)
dSq

dt
= �S − mqSq − �Sq,

(3)
dE

dt
= �(I

an
+ I

sn
)S(1 − �) − �E − �E,

(4)
dIan

dt
= p�E − �1Ian − �Ian − �aIan − �Ian,

(5)
dIsn

dt
= (1 − p)�E − �1Isn − �sIsn + �Ian − �Isn,

(6)
dI

ad

dt
= �

a
I
an
− �I

ad
− �I

ad
,

(7)
dI

sd

dt
= �

s
I
sn
− �I

sd
− �I

sd
− �I

sd
,

(8)
dHq

dt
= �Iad − �3Hq + �Isd − �Hq − �Hq,

(9)
dH

dt
= �Isd − �2H − �2H + �Hq − �H,

(10)
dR

dt
= �

1
Ian + �

2
H + �

3
Hq − �R.

�2 =
{

(S, Sq, E, Ian, Isn, Iad, Isd, Hq, H, R) ∈ ℝ
10

+
∶ 0

≤ S, Sq, E, Ian, Isn, Iad, Isd, Hq, H, R

≤
∧

�

}

.

Fig. 1  Schematic diagram of the epidemic model
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Using the Next Generation Matrix Method as in van den 
Driessche and Watmough (2002), Diekmann et al. (1990), 
Hethcote (2000), we obtain the expression for basic repro-
duction number ( R

0
 ). Basic reproduction number is defined 

as the average number of secondary cases produced by a 
single infected case in an otherwise susceptible population. 
We compute

These two matrices depict the new infections and transi-
tion terms, respectively. The next two matrices F and V are 
Jacobian of F  and V , respectively

The basic reproduction number ( R
0
 ) is the largest eigenvalue 

of FV
−1 , given by

An unique Endemic Equilibrium (EE) of the system (1)–(10) 
exists provided R

0
> 1 and is given by 

where

E0 =

(

∧(mq + �)

�(mq + � + �)
,

∧�

�(mq + � + �)
, 0, 0, 0, 0, 0, 0, 0, 0

)

.

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

�(1 − �)(Ian + Isn)S

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(� + �)E

−p�E + (�
1
+ � + �a + �)Ian

−(1 − p)�E − �Ian + (�
1
+ �s + �)Isn

−�aIan + (� + �)Iad

−�sIsn + (� + � + �)Isd

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 �(1 − �)
∧(mq+�)

�(mq+�+�)
�(1 − �)

∧(mq+�)

�(mq+�+�)
0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

� + � 0 0 0 0

−p� �
1
+ � + �a + � 0 0 0

−(1 − p)� − � �
1
+ �s + � 0 0

0 − �a 0 � + � 0

0 0 − �s 0 � + � + �

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

R
0
=

∧

�

�(1 − �)(mq + �)�

(mq + � + �)(� + �)

×

(

(1 − p)(�
1
+ � + �a + �) + p� + p(�

1
+ �s + �)

)

(�
1
+ � + �a + �)(�

1
+ �s + �)

.

EE = (S ∗, Sq ∗, E ∗, Ian ∗, Isn ∗, Iad ∗, Isd ∗, Hq ∗, H ∗, R ∗),

where, d
1
= �

1
+ � + �

a
+ � ; d

2
= �

1
+ �

s
+ � ; d

3
= mq + � ; 

d
4
= � + � + � ; d

5
= �

3
+ � + � ; d

6
= �

2
+ �

2
+ �.

Stability analysis

In this section, we state the theorems on local stability of the 
equilibria. The proofs are omitted as they are trivial.

Theorem 1 The Disease-free Equilibrium given by E
0
 is 

locally asymptotically stable under certain restrictions when 

R
0
< 1 and is unstable otherwise. The restrictions are

w h e r e  S0 =
∧(mq+�)

�(mq+�+�)
 ,  d

1
= �

1
+ � + �

a
+ �  a n d 

d
2
= �

1
+ �

s
+ �.

Theorem 2 The Endemic Equilibrium given by EE which 

exists if R
0
> 1 is locally asymptotically stable under certain 

restrictions and is unstable otherwise. The restrictions are

where

R∗ =
1

�

(

�1I∗
an
+ �2H∗ + �3H∗

q

)

,

H∗ =
1

d6

(

�I∗
sd
+ �H∗

q

)

,

H∗

q
=

1

d5

(

�I∗
ad
+ �I∗

sd

)

,

I∗
sd
=

�s

d4

I∗
sn

,

I∗
ad

=
�a

(� + �)
I∗
an

,

I∗
sn
=

(�I∗
an
+ (1 − p)�E∗)

d2

,

I∗
an

=
p�E∗

d1

, S∗

q
=

�S∗

d3

,

E∗ =
1

� + �

(

∧ −
�(mq + � + �)

(mq + �)
S∗

)

,

S∗ =
(� + �)d1d2

�(1 − �)�(pd2 + p� + (1 − p)d1)
,

(𝜇 + 𝛿 + d1 + d2)(d1d2 + (d1 + d2)(𝛿 + 𝜇)

> (𝛿 + 𝜇)d1d2 − S0𝛽𝛿(1 − 𝛼)(1 − d1)

+ S0𝛽𝛿p(1 − 𝛼)(d1 − d2 − 𝜁),

A1 > 0, A1A2 − A3 > 0,

A1A2A3 + A1A5 − A
2

1
A4 − A

2

3
> 0

A1A2A3A4 + 2A1A5A4 + A
2

3
A5 − A

2

3
A4

− A
2

5
− A

2

1
A

2

4
− A1A

2

2
A5 > 0

A1A2A3A4A5 + 2A1A4A
2

5
+ A2A3A

2

5

− A
2

1
A

2

4
A5 − A1A

2

2
A

2

5
− A

2

3
A4A5 − A

3

5
> 0,
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where j11 = (� + �) +
�(1−�)�

d1d2

∧

(�+�)

(

d2p + (1 − p)d1 + �p
)

,

j
14

=
(�+�)d

1
d

2

�(pd
2
+(1−p)d

1
+�p)

.

A1 = (d1 + d2 + d3 + � + � + j11)

A2 = d1d2 + d1d3 + d2d3 + (d1 + d2 + d3)(� + � + j11)

+ �(j11 − j14) + �(j11 − mq)

A3 = d1d2d3 + (d1d2 + d1d3 + d2d3)

(� + � + j11) + j11(d1 + d2 + d3)(� + �)

− (d1 + d2 + � + �)mq�

+ �j14(d1p − d2p − p� − (� + �))

A4 = �j14�(mq − d3 − d1) −
(

d1d2 + (d1 + d2)(� + �)
)

mq�

+ j11(� + �)(d1d2 + d1d3)

+ j11(� + �)(d2d3) + (d1d2d3)(� + � + j11)

+ �j14(d1 − d2)p(d3 + � + �)

− �j14

(

d1d3 + (d1 + d3)�

+p�(d3 + � + �)
)

A5 = d1d2d3j11(� + �) − d1d3�j14(� + �)

− d1�mq�(d2 − j14) − d1d2mq��

+ �j14p
(

(d1 − d2)(d3�

+d3� − mq�) − �(d3(� + �) − mq�)
)

,

Numerical simulation

Data and model fitting

Best fit of data with optimum parameter values help us in 
identifying those key parameters which will help in control-
ling the disease spread. In this work for model fitting and 
optimal parameter estimation, we have worked with active 
COVID-19 cases data of India and its three states, namely 
Maharashtra, Karnataka, and Tamil Nadu. The data are col-
lected from https:// www. covid 19ind ia. org/. The collected 
data are of 8 months starting from May 1, 2020 to December 
31, 2020. From this model calibration, we have estimated the 

Table 1  Values of parameters 
for the model (1)

Parameter Value References

∧ : Varies

� : 0.8958 Sarkar et al. (2020)

� : 0.05 Ngonghala et al. (2020); Davies et al. (2013)

p : [0.15,0.7] Ferguson et al. (2020); Li et al. (2020)

m
q

: 0.0417 Tang et al. (2012)

� : [0.071,0.33] Lauer et al. (2020); Li et al. (2020)

�
1

: .12 Assumed

�
2

: 1/14 Zhou et al. (2020); Tang et al. (2020)

�
3

: 1/7.48 Sarkar et al. (2020)

� : [0.01,0.08] Aldila et al. (2020)

�
1

: 0.0002 Assumed

�
2

: 0.00002 Assumed

� : 0.2 Ngonghala et al. (2020)

� : [0.02,0.1] Ferguson et al. (2020); Li et al. (2020)

� : 0.07151 Tang et al. (2020)

� : 0.02 Assumed

� : 0.000425 Demographic

Table 2  Estimated optimum parameter values and basic reproduction 
number

States Estimated parameter values Estimated R
0
 value

Maharashtra � = 6.935 × 10−6 R
0
= 1.8727

�
a
= .056

�
s
= .073

Karnataka � = 4.006 × 10
−

6 R
0
= 1.5803

�
a
= .218

�
s
= .048

Tamil Nadu � = 2.338 × 10
−

6 R
0
= 1.1032

�
a
= .063

�
s
= .047

India � = 2.065 × 10−7 R
0
= 1.1146

�
a
= .095

�
s
= .037

https://www.covid19india.org/
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optimum values of three parameters which are disease trans-
mission rate (infection rate), detection rate of asymptomatic 
undetected individuals, and detection rate of symptomatic 
undetected individuals. The remaining parameter values are 
listed in Table 1.

Numerical simulation of the model by means of data fit-
ting is done using R software. We have used the sum of least 
square method (Betti and Heffernan 2021) to estimate � , �

a
 

and �
s
 which best fit the observed active cases for all the four 

data sets. These estimated parameter values along with the 
value of R

0
 are mentioned in Table 2.

Considering the three states for comparison, we see that 
R

0
 and � values are maximum for Maharashtra, followed 

by Karnataka and least is for Tamil Nadu. In a similar way, 
the disease transmission rate or infection rate ( � ) is high-
est for Maharashtra and least for Tamil Nadu. This can be 
related with the total confirmed cases in these three states 
(https:// www. covid 19ind ia. org/). Since we have included 
parameter related to detection in the developed model, we 
obtain optimum values of �

a
 and �

s
 for which we get the 

best fit. We observe that the total detection rate is maxi-
mum in Karnataka, and as of December 31, 2020 a total of 
14,078,158 testing were completed (https:// www. covid 19ind 
ia. org/). The total detection rates of Maharashtra and Tamil 
Nadu differ by 0.019. Higher detection rate implies reduction 
in the disease transmission rate, since more infected indi-
viduals get detected, and their chances of coming in contact 
with disease-free individuals are nullified, hence drastically 
reducing the infection rate.

The higher value of R
0
 in Maharashtra suggests that the 

spread of the disease is faster, which can be justified with 
the fact that being a state with 120 million plus population, 
the testing stood at only 14 million individuals. Hence, 

this can be due to no proper testing or contact tracing. The 
other reasons could be no compulsory usage of face mask 
and no practice of social distancing. The model fitting is 
depicted in Fig. 2, wherein the simulations are done for 
243 days. In all the four figures (a), (b), (c), and (d), the 
curve is bending for longer duration of time, implying the 
cases will reduce in number and saturate at the last data 
set.

Figure 3 depicts the prediction for 100 more days, and 
the curve is a decreasing curve implying reduction in the 
COVID cases, which adheres to the present-day COVID-19 
scenario.

Sensitivity analysis

Sensitivity analysis is crucial in determining the importance 
of various parameters in disease transmission. In Rodrigues 
et al. (2013), a detailed explanation on sensitivity analysis 
for case of dengue is presented. It helps in determining the 
model robustness, as different predictions are made, which 
are exposed to chances of error, be it in data collection or 
different assumed parameter values. Sensitivity analysis 
helps in identifying the parameters with high and low impact 
on the reproduction number, thereby helping in focusing on 
various intervention strategies. The normalized forward sen-
sitivity index of a variable with respect to a parameter is the 
ratio of the relative change in the variable to the relative 
change in the parameter. When the variable is a differenti-
able function of the parameter, the sensitivity index may be 
alternatively defined using partial derivatives. From Chitnis 
et al. (2008), the normalized forward sensitivity index of R

0
 , 

that depends differentiably on a parameter a, is defined by

Fig. 2  Plots of the fitted mode with observed COVID-19 cases for a India, b Maharashtra, c Karnataka, and d Tamil Nadu. The red dots repre-
sent observed data and the green curve is the model solution

https://www.covid19india.org/
https://www.covid19india.org/
https://www.covid19india.org/
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Figure 4 depicts the normalized forward sensitivity indices 
of R

0
 with respect to various parameters. The figure clearly 

denotes that the parameters � , � , m
q
 , � , and ∧ have positive 

indices with R
0
 . This suggests that with increase in the val-

ues of these parameters, the R
0
 value increases. Hence, these 

parameters are required to be controlled, so as to control the 
spread of the disease. From the figure, we note that the sen-
sitivity indices of � and ∧ are 1, which means that R

0
 value 

increases by 1 percent if these parameters are increased by 1 
percent. Similarly, the parameters � , � , � , p, �

1
 , �

1
 , �

a
 , and �

s
 

share negative indices with the basic reproduction number. 

r
R

0

a =

�R
0

�a
×

a

R
0

.

We note that increases in the values of parameters namely 
detection rates and face mask efficacy, as well as increase in 
quarantine rate of susceptible have major impact in reduction 
of the basic reproduction number.

Figures 5, 6, and 7 depict how certain parameters can bring 
down the value of basic reproduction number below 1 and 
hence the epidemic potential. The contour plot (Fig. 5) shows 
that increase in the recovery rate of the asymptomatic indi-
viduals will result in reduction of R

0
 as well as lower disease 

transmission rates will bring down the R
0
 value at significant 

rate. This could be sufficed with the fact that if more number 
of unidentified asymptomatic individuals have higher recov-
ery rate, then chances of transmission of infection from these 
individuals are quite less. From the contour plot (Fig. 6), we 
conclude that as both mask efficacy and fraction of people 
wearing it, increases along with a higher rate at which the 
susceptible are quarantined, the epidemic potential reduces 
to value below unity. The reason here is, if more people are 
adhering to compulsory mask usage, the lesser will be the 
transmission of disease from infected to susceptible individu-
als. Similarly, if more number of individuals are quarantined at 
initial stage, there are chances of earlier detection. From Fig. 7, 
it can be concluded that greater the detection rate, lower will 
be the risk of disease transmission. This is due to the reasoning 
that, once the individuals are identified to be infectious, they 
will be either quarantined, isolated, or hospitalized. Hence, 
the probability of passing of infection from these individuals 
is reduced significantly.

Impact of different parameters on prevalence 
of COVID‑19

In this section, we present the time series analysis of 
the model (1)–(10) for the undetected asymptomatic, 

Fig. 3  Plots of the fitted mode with observed COVID-19 cases with predictions for a India, b Maharashtra, c Karnataka, and d Tamil Nadu. The 
red dots represent observed data and the green curve is the model solution

Fig. 4  Normalized forward sensitivity indices of R
0
 with respect to 

the model parameters ∧ = 500 , � = 0.8958 , � = 0.3 , m
q
= 0.0417 , 

� = 0.071 , �
1
= 0.12 , �

2
= 0.0714 , �

3
= 0.137 , � = 0.06 , �

1
= 0.0002 , 

�
1
= 0.0002 , � = 0.000425 , p = 0.6995 , � = 0.0000028 , �

a
= 0.063 , 

�
s
= 0.047 , � = 0.2 , � = 0.09 , � = 0.0715 , � = 0.02
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symptomatic, and hospitalized population for Maharashtra, 
Karnataka, Tamil Nadu, and India as a whole. We study the 
behaviour of these curves by changing parameter values. 
Figure 8 shows that with increase in the recovery rates of 
I
an

 , the number of individuals belonging to this class will 
reduce. This happens as with lesser days of recovery, the 
possibilities of infectious pathogens getting transmitted is 
less. A similar behaviour is observed in Fig. 9, where the 
variation in I

an
 is studied with respect to detection rate of 

asymptomatic individuals. Here, with the rise in detection 
rates by means of say rapid testing kits, home testing tools, 
well functioning of contact tracing, etc. results in move-
ment of these individuals to detected classes. Therefore, 
we get decreasing curves with increasing �

a
 value. Similar 

behaviour is observed in the case of symptomatic unidenti-
fied class ( I

sn
 ) in Fig. 10. Figure 11 depicts decrease in the 

hospitalized population with increase in the recovery rate. 
Similar pattern is observed for all three states and the coun-
try as a whole.

Optimal control

Optimal control problem

In this section, we extend the mathematical model, which is 
presented by the system of Eqs. (1)–(10) by adding control 
parameters for the formulation of optimal control problem. u

1
 

and u
2
 are the two control parameters included in the model. 

Here, u
1
 represents the control parameter which is responsible 

for reducing the transmission rate ( � ). This control parameter 
can be equated with compulsory use of face mask, sanitation, 
and hand gloves usage. The other control u

2
 , helps in detecting 

the asymptomatic and symptomatic unidentified population, 
thereby reducing the population in these compartments. This 
is possible, since rapid testing, contact tracing, and enhanced 
home testing tool kits will result in over all improvement in the 
detection rate. �

a
+ u

2
 and �

s
+ u

2
 are the enhanced detection 

rate with rapid testing, home testing tools, and contact trac-
ing. These two control functions are bounded and Lebesgue 

Fig. 5  Contour plot of the basic reproduction number with respect to 
the infection rate ( � ) and recovery rate of asymptomatic undetected 
( �

1
 ) for a India, b Maharashtra, c Karnataka, and d Tamil Nadu. 

Parameter values: a �
a
= .095 , �

s
= .037 ; b �

a
= .056 , �

s
= .073 ; c 

�
a
= .218 , �

s
= .048 ; d �

a
= .063 , �

s
= .047 . The rest of the param-

eters are as in Table 1
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integrable on [0, tf ] , where tf  is the pre-fixed time interval 
length to which controls are applied. It is assumed that u

1
 and 

u
2
 lie between 0 and 1, since if both equal zero, it implies no 

efforts are placed in these controls. Similarly, maximum effort 
relates to these values being 1. With the above assumptions, 
the following optimal control model is formulated:

(11)

dS

dt
= ∧ −�S − (1 − �)(1 − u1(t))�S(Ian + Isn)

+ mqSq − �S,

(12)
dSq

dt
= �S − mqSq − �Sq,

(13)
dE

dt
= (1 − �)(1 − u1(t))�S(I

an
+ I

sn
) − �E − �E,

(14)
dIan

dt
= p�E − �1Ian − �Ian − (�a + u2(t))Ian − �Ian,

The objective functional for the fixed tf  is given by

(15)

dIsn

dt
= (1 − p)�E − �1Isn − (�s + u2(t))Isn

+ �Ian − �Isn,

(16)
dI

ad

dt
= (�

a
+ u2(t))Ian

− �I
ad
− �I

ad
,

(17)
dI

sd

dt
= (�

s
+ u2(t))Isn

− �I
sd
− �I

sd
− �I

sd
,

(18)
dHq

dt
= �Iad − �3Hq + �Isd − �Hq − �Hq,

(19)
dH

dt
= �Isd − �2H − �2H + �Hq − �H,

(20)
dR

dt
= �

1
Ian + �

2
H + �

3
Hq − �R.

Fig. 6  Contour plot of the basic reproduction number with respect to 
the face mask efficacy ( � ) and quarantine rate of susceptibles ( � ) for a 
India, b Maharashtra, c Karnataka, and d Tamil Nadu. Parameter val-
ues: a � = 2.065 × 10−7 , �

a
= .095 , �

s
= .037 ; b � = 6.935 × 10−6 , 

�
a
= .056 , �

s
= .073 ; c � = 4.006 × 10

−
6 , �

a
= .218 , �

s
= .048 ; d 

� = 2.338 × 10
−6 , �

a
= .063 , �

s
= .047 . The rest of the parameters are 

as in Table 1
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where C1, C2, C3, C4, C5, C6 ≥ 0 are the weight constants.
Objective is to find the control parameters u

1
∗ , u

2
∗ , 

such that

where �
1
 is the control set, defined as

The Lagrangian of this problem is

(21)
J = ∫

tf

0

(

C1Ian + C2Isn + C3Iad + C4Isd

+
1

2
C5u2

1
+

1

2
C6u2

2

)

dt,

J(u1 ∗, u2 ∗) = min
u1,u2∈�1

J(u1, u2),

𝛺1 =
{

u1, u2 ∶ measurable and

0 ≤ u1, u2 < 1
}

and t ∈ [0, tf ].

The Hamiltonian H formed for our problem is

where �′
i
s are the adjoint variables (i = 1–10).

L(I
an

, I
sn

, I
ad

, I
sd

, u1, u2)

= C1I
an
+ C2I

sn
+ C3I

ad
+ C4I

sd

+
1

2
C5u

2

1
+

1

2
C6u

2

2
.

H = L(Ian, Isn, Iad, Isd, u1, u2) + �1

dS

dt

+ �2

dSq

dt
+ �3

dE

dt
+ �4

dIan

dt

+ �5

dIsn

dt
+ �6

dIad

dt
+ �7

dIsd

dt
+ �8

dHq

dt

+ �9

dH

dt
+ �10

R

dt
,

Fig. 7  Contour plot of the basic reproduction number with respect 
to the asymptomatic detection rate ( �

a
 ) and detection rate of symp-

tomatic ( �
s
 ) for a India, b Maharashtra, c Karnataka, and d Tamil 

Nadu. Parameter values: a � = 2.065 × 10−7 , b � = 6.935 × 10−6 , c 
� = 4.006 × 10

−6 , d � = 2.338 × 10
−6 . The rest of the parameters are 

as in Table 1
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The adjoint variables are written in the form of differen-
tial equations as follows:

(22)

d�1

dt
= −

�H

�S
= �1� + (�1 − �2)�

+ (�1 − �3)�(1 − �)(1 − u1(t))(Ian
+ I

sn
),

(23)
d�2

dt
= −

�H

�Sq

= (�2 − �1)mq + �2�,

(24)

d�3

dt
= −

�H

�E
= (�3 − �4)p� + (�3 − �5)(1 − p)� + �3�,

(25)

d�4

dt
= −

�H

�I
an

= −C1 + (�1 − �3)�(1 − �)(1 − u1(t))S

+ (�4 − �10)�1 + (�4 − �5)�

+ (�4 − �6)(�a
+ u2(t)) + �4�,

(26)

d�5

dt
= −

�H

�I
sn

= −C2 + (�1 − �3)�(1 − �)(1 − u1(t))S

+ (�5 − �7)(�s
+ u2(t)) + �5(�1 + �),

Let S̃ , S̃q , Ẽ , Ĩ
an

 , Ĩ
sn

 , Ĩ
ad

 , Ĩ
sd

 , H̃q , H̃ , and R̃ be optimum val-
ues of S, Sq , E, I

an
 , I

sn
 , I

ad
 , I

sd
 , Hq , H, and R, respectively. 

Let �̃
1
 , �̃

2
,�̃

3
 , �̃

4
 , �̃

5
 , �̃

6
 , �̃

7
 , �̃

8
 , �̃

9
 , and �̃

10
 be solution of (8). 

Using (Pontryagin et al. 1962; Pontryagin 1987; Lenhart 
and Optimal 2007), we state and prove the below theorem.

(27)
d�6

dt
= −

�H

�I
ad

= −C3 + (�6 − �8)� + �6�,

(28)

d�7

dt
= −

�H

�I
sd

= −C4 + (�7 − �9)� + (�7 − �8)� + �7�,

(29)
d�8

dt
= −

�H

�Hq

= (�8 − �10)�3 + (�8 − �9)� + �8�,

(30)
d�9

dt
= −

�H

�H
= (�9 − �10)�2 + �9(�2 + �),

(31)
d�

10

dt
= −

�H

�R
= �

10
�.

Fig. 8  Time series of model (1) showing variations in asymptomatic undetected individuals I
an

 with respect to �
1
 for a India, b Maharashtra, c 

Karnataka, and d Tamil Nadu. Parameters are same as Fig. 6
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Theorem 3 There exists optimal controls u
1
∗ , u

2
∗ ∈ �

1
 , 

such that J(u1 ∗, u2 ∗) = min J(u1, u2) subject to extended 

system of Eqs. (11)–(20) .

Proof We use (Pontryagin et al. 1962) to prove this theorem. 
In this case, we observe that the controls are non-negative. 
The necessary convexity of the objective functional in 
(u1, u2) is satisfied for minimizing the problem. The set of 
control variable u1, u2 ∈ �1 is convex and closed by defini-
tion. The state variables are bounded and the integrand of the 
functional C

1
I
an
+ C

2
I
sn
+ C

3
I
ad
+ C

4
I
sd
+

1

2
C

5
u

2

1
+

1

2
C

6
u

2

2
  

is convex on �
1
 . Since there exist optimal controls for mini-

mizing the functional subject to systems (11)–(20) and (22)–
(31), we use Pontryagin’s maximum principle (Pontryagin 
et al. 1962) to derive the necessary conditions to find the 
optimal solutions in the following way:

Suppose (z, u) is an optimal solution of an optimal con-
trol problem, then this implies that there exist a non-trivial 
vector function � = �1, �2,… , �

n
 satisfying the following:

   ◻

Theorem 4 The optimal controls u
1
∗ , u

2
∗ which minimize 

J over the region �
1
 are given by

where

dz

dt
=

�H(t, z, u, �)

��
, 0 =

�H(t, z, u, �)

��
,

d�

dt
=

�H(t, z, u, �)

��
.

u1 ∗= min
{

1, max(0, ũ1

}

u2 ∗= min
{

1, max(0, ũ2

}

,

ũ
1
=

(�
3
− �

1
)�(1 − �)S(I

an
+ I

sn
)

C
5

ũ
2
=

(�
4
− �

6
)I

an
+ (�

5
− �

7
)I

sn

C
6

.

Fig. 9  Time series of model (1) showing variations in asymptomatic undetected individuals I
an

 with respect to �
a
 for a India, b Maharashtra, c 

Karnataka, d Tamil Nadu. Parameters are same as Fig. 6
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Proof We prove this theorem using (Pontryagin 1987; Pon-
tryagin et al. 1962) and Theorem 3.

Using the optimally condition: �H
�u

1

= 0 , �H
�u

2

= 0 , we get

Again, the lower bound is 0 and upper bound is 1 for the 
controls u

1
 and u

2
 . This suggests that u

1
= u

2
= 0 if �u

1
< 0 

and �u
2
< 0 , also u

1
= u

2
= 1 if �u

1
> 1 and �u

2
> 1 , otherwise 

u
1
= ũ

1
 and u

2
= ũ

2
 . Therefore, for these controls u

1
∗ and 

u
2
∗ , we get optimum values of J.   ◻

Optimal control model simulation

The simulation of the optimal control problem is done 
in MATLAB by using the set of parameter values which 

�H

�u
1

= C
5
u

1
+ (�

1
− �

3
)�(1 − �)S(I

an
+ I

sn
) = 0

⟹ u
1
=

(�
3
− �

1
)�(1 − �)S(I

an
+ I

sn
)

C
5

= ũ
1

and
�H

�u
2

= C
6
u

2
+ (�

6
− �

4
)I

an
+ (�

7
− �

5
)I

sn

⟹ u
2
=

(�
4
− �

6
)I

an
+ (�

5
− �

7
)I

sn

C
6

= ũ
2
.

corresponds to stability of endemic equilibrium (EE). The 
time interval is taken to be 150 days. The weight constants 
are C1 = 1, C2 = 1, C3 = 1, C4 = 1, C5 = 90, C6 = 100 . The 
extended system of Eqs. (11)–(20) is solved by iterative 
method using forward and backward difference approxima-
tion. The control profiles of u

1
 and u

2
 are depicted in Fig. 12. 

Figure 13 shows the variation in undetected asymptomatic 
and symptomatic population with and without control. It is 
very evident that inclusion of control parameters will reduce 
the cases of I

an
 and I

sn
 , since enhanced detection and reduced 

infection rate will reduce the undetected infected population. 
Hence, optimal control is effective in decreasing the infec-
tive population within a desired interval of time.

Discussion

The numerical simulations provided different results and a 
clear interpretation on the pandemic situation for the con-
sidered time period. The curve for infected cases is predicted 
for next 100 days and it did abide by the pandemic trend. In 
the Sect. “Numerical Simulation”, we get the optimum esti-
mates for infection rate and detection rate of the three states 
and India. Among the three states, Maharashtra has an highest 
infection rate of 6.935 × 10−6 and thereby larger Reproduction 

Fig. 10  Time series of model (1) showing variations in symptomatic undetected individuals I
sn

 with respect to �
s
 for a India, b Maharashtra, c 

Karnataka, and d Tamil Nadu. Parameters are same as Fig. 6
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Number value of 1.8727. This indicates that the R
0
 value will 

keep rising as the number infectives increases rapidly. The sen-
sitivity analysis performed in Sect. “Numerical Simulation” 
suggests the same. Along with the infection rate, the signifi-
cance of other parameters is also determined under sensitivity 
analysis. The lowest infection rate among the three states was 
observed for the state of Tamil Nadu being 2.338 × 10

−6 . This 
satisfies with the data of the state, as it reported less number of 

total active cases in comparison with other two states. Tamil 
Nadu witnessed more number of recoveries in comparison as 
per (https:// www. covid 19ind ia. org/). Under optimal control 
analysis in Sect. “Optimal Control”, increase in the detection 
of infectives and rapid testing help in curbing the disease trans-
mission. Compulsory mask usage, relating to control param-
eter u

1
 and rapid testing, contact tracing relating to control 

parameter u
2
 will contribute in bringing down the infection 

Fig. 11  Time series of model (1) showing variations in hospitalized individuals H with respect to �
2
 for a India, b Maharashtra, c Karnataka, and 

d Tamil Nadu. Parameters are same as Fig. 6

Fig. 12  Control profile of a u
1
 and b u

2

https://www.covid19india.org/
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rate by a larger margin. If these interventions are not followed, 
the infections will spike up. Hence, these results adhere to the 
significance of parameters involved in developing the model.

Conclusion

Epidemic models help to understand the way in which the 
spread of disease takes place. These compartmental mathemat-
ical models play a significant role in determining various con-
trol parameters by which new policies and interventions can 
be implemented to bring in a decline in the growing trend of 
disease spread. In this study, we developed an epidemic model 
with ten compartments and performed mathematical analy-
sis on it. We obtained two unique equilibrium point namely 
disease-free equilibrium and endemic equilibrium, and proved 
local stability under certain restrictions on parameters. The 
study is based on 8 months data of COVID-19 cases in India 
and three of its states. The model fitting is done for the four 
data sets by means of least square method in R software, by 
which we obtained optimum parameter values of disease trans-
mission rate, and detection rate of undetected asymptomatic 
and symptomatic population for the best fit of the collected 
data. From the results of parameter estimation, we note that the 
infection rate is maximum for Maharashtra and the detection 
rate is maximum for Karnataka that agree with the reported 
data from https:// www. covid 19ind ia. org/. We fitted the model 
with predictions, wherein we observed that the curve keeps 
decreasing in the next 100 days, which agrees with the actual 
data trend as in https:// www. covid 19ind ia. org/. Sensitivity 
analysis is performed, which gives a detailed explanation of 
each parameter and its impact on the reproduction number. 
We witness that the higher values of detection rates and face 
mask efficacy result in decline of basic reproduction number. 
It also shows that early quarantine and higher quarantine rates 
of the susceptible help in reducing the number of unidentified 
infected population. All these contribute in reduction in arrival 

of secondary cases. Time series behaviour is obtained to study 
the variations in asymptomatic, symptomatic, and hospitalized 
compartment with rise and fall of parameter values. In this 
study, we have extended the model to optimal control problem 
by incorporating two control parameters, one to reduce disease 
transmission and the other to enhance the detection rate. From 
all these, we conclude that if policies related to rapid testing, 
monitored contact tracing, compulsory mask, and gloves usage 
are implemented, then the spread of this deadly pandemic can 
be controlled. The model in future could be extended by tak-
ing several other parameters related to age and inclusion of 
population with cases of respiratory ailments. This will help 
to get a deeper perspective on the infection spread and a well-
categorized result based on the assumptions made.
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