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     Abstract:   In this work, a new methodology based on 

artificial neural networks (ANN) has been developed to 

study the low-velocity impact characteristics of woven 

glass epoxy laminates of EP3 grade. To train and test the 

networks, multiple impact cases have been generated 

using statistical analysis of variance (ANOVA). Experi-

mental tests were performed using an instrumented 

falling-weight impact-testing machine. Different impact 

velocities and impact energies on different thicknesses 

of laminates were considered as the input parameters of 

the ANN model. This model is a feed-forward back-prop-

agation neural network. Using the input/output data of 

the experiments, the model was trained and tested. Fur-

ther, the effects of the low-velocity impact response of the 

laminates at different energy levels were investigated by 

studying the cause-effect relationship among the influen-

tial factors using response surface methodology. The most 

significant parameter is determined from the other input 

variables through ANOVA.  
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1    Introduction 

 The need for a material that has a high strength-to-

weight and stiffness-to-weight ratio, good fatigue, and 

better corrosive properties has provoked structural engi-

neers to focus on composite materials. Hence, there has 

been a growing interest to use composite materials in 

structural applications because of their outstanding 

properties when compared with conventional materials. 

Studies on the impact loading response of composite 

structures have shown that such loading can cause a 

substantial amount of damage, resulting in significant 

reductions in their strength and stiffness. A number of 

reviews on impact damages in composite structures are 

available  [1 – 3]  and detail the experimental investiga-

tions and analytical and numerical models developed. 

Matrix deformation and microcracking, interfacial 

debonding, lamina splitting, delamination, fiber break-

age, and fiber pull-out are the possible modes of failure 

in composite laminates subjected to impact loading. 

Although fiber breakage is the ultimate failure mode, 

the damage would initiate in the form of matrix crack-

ing propagation and lamina splitting and lead to dela-

mination. Hence, it becomes highly important to predict 

or determine their response to impact loading. Some 

experimental studies on the behavior of laminates 

subjected to low-velocity impact are found in previousl 

published references  [4 – 9] . 

 The design of structures and components using 

newly developed composite materials usually requires 

extensive (and expensive) testing programs. Ideally, the 

designer should be able to accurately assess the perfor-

mance of a new material or an existing material under 

untested conditions using a relatively small database 

of test results. For these situations, when it is difficult 

to find an accurate mathematical-based solution and 

the existing data are incomplete, noisy, or complex, the 

biologically motivated computing paradigm of artificial 

neural networks (ANNs) has emerged as a superior mod-

eling tool  [10] . Because of their massively parallel struc-

ture and their ability to learn by example, ANN can deal 

with non-linear modeling for which an accurate analyti-

cal solution is difficult to obtain. ANN has already been 

used in medical applications, image and speech recog-

nition, classification, and control of dynamic systems, 

among others, but only recently have they been used in 

modeling the mechanical behavior of fiber-reinforced 

composite materials. 

 Chandrashekhara et al.  [11]  have studied the contact 

force for low-velocity impacts on laminated compo site 

plates using impact-induced strain and neural net-

works. They have proved that the ANN approach in the 

estimation of contact force to be a promising alternative 
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to more traditional techniques. Bezerra et al.  [12]  used 

ANN for the prediction of shear mechanical behavior of 

laminates. Chakraborty  [13]  proposed optimum network 

architecture to predict the presence of embedded delam-

inations in laminates using natural frequencies as indi-

cative parameters and ANN as a learning tool. Graham 

et al.  [14]  developed an ANN methodology to speed 

the damage detection process for the non-destructive 

evaluation of impact-damaged carbon fiber composites. 

Fern á ndez-Fdz et al.  [15]  have predicted the ballistic 

behavior of carbon fiber reinforced polymers (CFRPs) 

against high-velocity impact of solids using ANN. 

 Response surface methodology (RSM) is a series of 

mathematical and statistical techniques used for mod-

eling and analyzing problems and has the objective of 

optimizing the responses  [16] . It is a sequential experi-

mentation strategy for empirical model building and 

optimization. RSM is often applied in the characterization 

and optimization of processes. RSM can determine and 

represent cause-effect relationships among input control 

factors that influence the responses as a two- or three-

dimensional hypersurface. Most of the work in RSM has 

been focused on the case where there is only one response 

of interest. In material characterization, however, it is 

quite common that several response variables are of 

interest. In this case, the determination of optimum con-

ditions on the input variables would require simulta-

neous consideration of all the responses. This is called a 

multiresponse problem. To date, several approaches have 

been proposed for multiresponse optimization (MRO) 

including the desirability function approach  [17]  and loss 

function approach. MRO problems often involve incom-

mensurate and conflicting criteria in multiple responses. 

A number of investigations using RSM are carried out to 

determine the significant factors affecting the response 

 [18, 19] . 

 It has been observed from earlier works that the appli-

cation of ANN in modeling the mechanical behavior of 

fiber-reinforced composite laminates subjected to low-

velocity impact loading is very inadequate. Hence, the 

present work aims at developing an ANN model for the pre-

diction of retardation, penetration, and absorbed energy 

in woven glass epoxy laminates. The experimental results 

were used to train and test the ANN model. As a second-

ary objective, quantitative and statistical analyses were 

performed to evaluate the effect of the process parameters 

on the low-velocity impact behavior of the laminates. The 

model of response to the variables is obtained by apply-

ing regression analysis. Finally, an analysis of variance 

(ANOVA) was performed to check the adequacy of the 

mathematical models.  

2    Experimental procedure 

2.1    Fabrication of the laminates 

 The tested material was woven glass fiber epoxy matrix 

composite laminates of EP3 grade fabricated at ICP Pvt. 

Ltd. (Bangalore, India) in three different thicknesses, 

namely 2, 4, and 6 mm. The fiber reinforcement was kept 

constant for each batch of plates. Woven  ‘ E ’ -glass fabric 

type C of IS:11273 was used. An epoxy matrix based on 

Lapox L-12 resin and K-5 hardener was selected for making 

composite panels. Identical woven fabric layers were 

selected depending on the thickness of the composite 

laminates and fabricated by the hand lay-up process. The 

composite panels were first cured at room temperature for 

12 h under a pressure of 0.2 MPa using a hydraulic press. 

The postcuring was carried out at 120 ° C for 4 h and then 

cooled to room temperature. The composition of the lami-

nate is the following:

 –    Fiber: E-glass plain weave roving fabric (63 % )  

 –   Fiber orientation: warp and weff at 90 °   

 –   Reinforcement: Epoxy resin  –  Lapox L-12 (27 % )  

 –   Binder: araldite LY 556 (5 % )  

 –   Hardener: K-5 grade (5 % ); diluent: DY 021.     

2.2    Low-velocity impact testing 

 The low-velocity impact tests were conducted using instru-

mented impact tester, equipped with a cylindrical dart of 

10 mm diameter. The falling-weight impact test equipment 

setup is shown in Figure  1  . The dart material used was 

steel. A standard equipment is used to acquire, sample, 

collect, and store the signal from a piezoelectric load cell 

positioned at the other extremity of the calibrated cylin-

drical rod that constitutes the dart. 

 In accordance with ASTM D3029 standard  [20] , a 

batch of square, thin (150 mm side with varying thick-

nesses; 2, 4, and 6 mm) specimens were tested. The 

specimens were firmly clamped using specifically 

designed clamping apparatus that has a central rectan-

gular slot of 100  ×  100 mm. In this experimental work, 

the variation of impact parameters such as impact 

velocity and impact energy on the different thicknesses 

of the laminates was examined to record responses 

such as retardation, penetration, and absorbed energy 

at the maximum load of woven glass epoxy laminates 

in an impact event. Because the results were found to 

be highly reproducible, three specimens were used for 

each test condition.   
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3    Neural network approach 

3.1    Artificial neural networks 

 An ANN is a massive parallel information processing 

system with certain performance characteristics similar to 

biological neural systems. ANNs are developed as generali-

zations of the mathematical models of the human brain. 

The information is processed at a simple element called 

neuron  [21, 22] . Connections are made between neurons 

through links. Each link has a weight. The structure of an 

artificial neuron is given in Figure  2  . 

 The ANN is characterized by its architecture, i.e., 

the way the neurons are connected to each other. The 

weights represent information being used by the network 

to solve a particular problem. Each neuron has an inter-

nal state called the activation state, which is a function 

of the inputs received. Some neurons will interface with 

the real world to receive the input, and some neurons 

provide outputs to the real world. The rest of the neurons 

are hidden, in the sense that they are not accessible to the 

real world but plays a major role in computation. Initially, 

all the weights are normalized and generated randomly. 

A typical ANN has three layers, namely, input layer, 

hidden layer, and output layer. There can be one or more 

 Figure 1    Instrumented falling-weight impact test equipment.    
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 Figure 2    Structure of an artificial neuron.    

hidden layers depending upon the number of dimensions 

of the training samples  [23] .  

3.2    Data normalization 

 The data acquired are highly susceptible to noise, missing, 

and inconsistent due to the experimental setup. Data 

normalization is applied to improve the accuracy and 

efficiency of the behavioral characteristics of neural net-

works. By performing normalization, the data are scaled 

to a specific range, such as [0.0, 1.0] or [-1, 1]. The two 

standard measures for data normalization are min-max 

normalization and Z-score normalization  [24, 25] . 

 The min-max normalization performs a linear transfor-

mation on the original data. It preserves the relationships 

among the original values. For example, if min 
 A 
  and max 

 A 
  

are the minimum and maximum values of an attribute  A , 

the min-max normalization maps the value  v  of  A  to  v ’   in 

the range [new_min 
 A 
 , new _ max 

 A 
 ] using the following Eq. (1) 

    
′ = +

- min
(new _max - new_min ) new_min

max

A

A A A

A

v
v

 
(1) 

 However, it will encounter the out-of-bounds error if 

a future input case for normalized data falls outside the 

original data range of  A . In Z-score (or Z-mean normaliza-

tion), the values of attribute  A  are normalized based on 

the mean and standard deviation of  A . The value  v  of  A  is 

mapped to  v ′   using Eq. (2), where std( A ) gives the standard 

deviation of  A . 

    

-mean( )

std( )

v A
v

A
′ =

 
(2) 

 With this normalization, the mean of the transformed 

values is reduced to zero. The Z-score normalization 

process is used to normalize the data.  
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3.3     Feed-forward neural network trained 
with back-propagation algorithm 

 The multilayered feed-forward neural network has been 

used in this article with one hidden layer of neurons. 

The feed-forward neural network is trained with training 

samples using the standard back-propagation algorithm. 

This training algorithm helps in determining the error 

obtained for the current training sample with the knowl-

edge of the desired output. The error calculated is propa-

gated back from output layer to the input layer through 

the hidden layers. At each hidden layer, as the back-

propa gated error is received; the weight adjustment factor 

is calculated and transmitted back to the input layer. At 

the input layer, the weights are adjusted based on the 

error, and again, the feed-forward training takes place. 

The overall training process consists of three stages: (a) 

feed-forward of the input pattern, (b) calculation and 

back-propagation of error, and (c) weight adjustment. The 

back-propagation algorithm used follows  [26] . 

 –  Step 0: Initialize the weights. (The weights are set to 

small random values.) 

 –  Step 1: When stopping condition are false, do steps 

2 – 9. 

 –  Step 2: For each training pair, do steps 3 – 8. 

 Feed-forward: 

 –  Step 3: Each input unit ( X  
 i 
 ,  i   =  1 …  n ) receives input 

signal  x  
 i 
  and broadcasts this signal to all units in the 

layer above (to the hidden units). 

 –  Step 4: Each hidden unit ( Z  
 j 
 ,  j   =  1 …  p ) sums its 

weighted input signals, 

    =

= + ∑
1

_ ,
n

j oj i ij

i

z in v x v
 

(3) 

 applies its activation function to compare its output 

signal, 

   z  
 j 
   =   f ( z _ in  

 j 
 ),  (4) 

 and sends the signal to all units in the layer above (to 

the output units). 

 –  Step 5: Each output unit ( Y  
 k 
 ,  k   =  1 …  m ) sums its 

weighted input signals, 

    =

= + ∑
1

_ ,
n

k ok j jk

j

y in w z w
 

(5) 

 and applies its activation function to compute its 

output signal. 

   y  
 k 
   =   f ( y _ in  

 k 
 ).  (6) 

 Back-propagation of error: 

 –  Step 6: Each output unit ( Y  
 k 
 ,  k   =  1 …  m ) receives a target 

pattern corresponding to the input training pattern 

and computes its error information term, 

   δ  
 k 
   =  ( t  

 k 
 - y  

 k 
 ) f ′  ( y _ in  

 k 
 ),  (7) 

 calculates its weight correction term (used to update 

 w  
 jk 
  later), 

   ∆  w  
 jk 
   =   α   δ   

 k 
  z  

 j 
 ,  (8) 

 calculates its bias correction term (used to update  w  
 ok 

  

later), 

   ∆  w  
 ok 

   =   α   δ   
 k 
 ,  (9) 

 and sends   δ   
 k 
  to the units in the layer below. 

 –  Step 7: Each hidden unit ( Z  
 j 
 ,  j   =  1 …  p ) sums its   δ   inputs, 

    1

_ ,
m

j k jk

k

in wδ δ

=

= ∑
 

(10) 

 is multiplied by the derivative of its activation func-

tion to calculate its error information term, 

   δ  
 j 
   =   δ _ in  

 j 
   f ′  ( z _ in  

 j 
 ),  (11) 

 calculates its weight correction term, 

   ∆ v 
ij
   =   α   δ  

j
  x 

i
 ,  (12) 

 and calculates its bias correction term, 

   ∆  v  
 oj 
   =    α   δ   

 j 
 .  (13) 

 Weight adjustment: 

 –  Step 8: Each output unit ( Y  
 k 
 ,  k   =  1 …  m ) updates its bias 

and weights ( j   =  0 …  p ): 

  w 
jk
 (new)  =  w 

jk
 (old) +  ∆ w

 jk
 .  (14) 

 Each hidden unit ( Z  
 j 
 ,  j   =  1 …  p ) updates its bias and 

weights ( i   =  0 …  n ): 

  v 
ij
 (new)  =  v 

ij
 (old) +  ∆ v

 ij
 .  (15) 

 –  Step 9: Test stopping condition.  

3.4    Neural network design and training 

 Neural network learns the patterns by training with differ-

ent types of sample data. Once the training is completed, 

the neural network is ready for generalization. The gen-

eralization capabilities of the neural network depends 

upon (a) the selection of the appropriate input/output 

parameters of the system, (b) the distribution of data set, 

and (c) the format of the presentation of the data set to 

the network. In this model, the three input parameters 
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used are laminate thickness, the impact velocity, and the 

impact energy. The three output parameters are retarda-

tion, penetration, and absorbed energy at maximum load. 

In this setup, the total number of experiments conducted 

were 325, of which two thirds of the data have been con-

sidered for training and one third of the data for testing. 

As mentioned, the input/output data sets are normalized 

before training using the Z-score normalization method. 

The standard multilayered feed-forward neural network 

trained with back-propagation algorithm is implemented 

in MATLAB 7.5 version. The network consists of one 

input layer with three neurons representing the three 

input parameters and one output layer with three output 

neurons indicating the three output parameters. The 

weights were randomly generated for the first iteration. 

The network was trained using the Levenberg-Marquardt 

algorithm. The network is trained initially with one neuron 

in the hidden layer, i.e., 3-1-3 topology was considered for 

training. In the subsequent phases, the number of hidden 

neurons in the hidden layer were increased gradually 

from 1 to 25 and then tested with two hidden layers with 

the same number of hidden neurons in the second hidden 

layer. The input/output data set of the model is illustrated 

schematically in Figure  3  .   

4    RSM and experimental design 

 As a secondary objective, experimental investigations 

were carried out on the design factors for low-velocity 

impact response. In RSM, it is possible to represent inde-

pendent process parameters in quantitative form as 
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 Figure 3    Architecture of a multilayer perceptron: feed-forward 

network with backward propagation error (3-20-3).    
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 where  Y  is the response (yield),  f  is the response function, 

  ε   is the experimental error, and  X  
1
 ,  X  

2
 ,  X  

3
   … X  

 n 
  are inde-

pendent parameters. By plotting the expected response 

of  Y , the response surface is obtained. The form of  f  is 

unknown and may be very complicated. Thus, RSM aims 

at approximating  f  by a suitable lower-ordered polynomial 

in some region of the independent process variables. If 

the response can be well modeled by a linear function of 

the independent variables, the function [Eq. (16)] can be 

written as 

   Y   =   C  
0
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1
  X  

1
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  X  
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 n 
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 n 
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 However, if a curvature appears in the system, then a 

higher-order polynomial such as the quadratic model [Eq. 

(18)] may be used: 

    
ε
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2
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n n
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i i
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(18) 

 The objective of using RSM is not only to investi-

gate the response over the entire factor space but also to 

locate the region of interest where the response reaches 

its optimum or near-optimum value. By studying carefully 

the response surface model, the combination of factors 

that gives the best response can then be established. 

 The most imperative and influential of three signifi-

cant factors, i.e., laminate thickness ( A ), impactor mass 

( B ), and height of fall of the impactor ( C ), on the laminate 

subjected to low-velocity impact were studied. A face-

centered central composite design was used to design 

the experiments for each parameter to predict the influ-

ence of each factor on the response. Each factor had two 

degrees of freedom. Hence, six was the summation of 

the total degrees of freedom of each factor. The levels for 

each impact testing parameters are shown in Table  1  . The 

natural values in the levels for the height of fall and the 

impactor mass were selected based on the instrumented 

falling-weight impact test equipment boundaries, and the 

levels of the laminate thickness were selected based on 

the standard thickness commercially available. 

 To simplify the calculation, the natural values of input 

parameters are converted into coded values. The coded 

Factors Coding Factor levels

-1 0 1

Thickness (mm)  X  
1
 2 4 6

Mass (N)  X  
2
 15.69 25.51 35.32

Height of fall (m)  X  
3
 0.5 1.0 1.5

 Table 1      Parameters and their levels.  
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numbers for the variables used in tables are obtained from 

the following transformation equation: 

    +

=
level 0

level 1 level 0

-

-

X X
X

X X  
(19) 

 The Design Expert 8.0 software was used for the regression 

and graphical analyses of the data obtained. The optimum 

values of the selected variables were obtained by solving 

the regression equation and by analyzing the response 

surface contour plots. ANOVA was also performed to test 

the adequacy of the proposed models.  

5    Results and discussion 

 The main objective of the present work was to study, 

predict, and analyze the low-velocity impact characteris-

tics of glass epoxy composite laminates using back-propa-

gation neural network (BPNN) and statistical analysis. 

The laminates of various thicknesses were subjected to 

low-velocity impact at energy levels ranging from 7.85 to 

52.97 J. The effects of the process parameters, i.e., lami-

nate thickness, impactor mass, and height of fall of the 

impactor, on the low-velocity impact behavior of the lami-

nates were evaluated. 

Run Topology Regression analysis MSE

Training Validation Testing Overall

1 3-1-3 0.9451 0.99243 0.93757 0.94176 8.19

2 3-2-3 0.96898 0.95151 0.94709 0.96558 7.26

3 3-3-3 0.98108 0.98805 0.97557 0.97809 4.35

4 3-4-3 0.98686 0.98835 0.97546 0.97859 2.92

5 3-5-3 0.99237 0.9934 0.97478 0.97439 1.27

6 3-6-3 0.99319 0.97938 0.96299 0.98072 1.14

7 3-7-3 0.99592 0.98916 0.9494 0.98345 0.82

8 3-8-3 0.99704 0.99495 0.98373 0.98133 0.72

9 3-9-3 0.99681 0.96976 0.93108 0.98196 0.72

10 3-10-3 0.99774 0.94276 0.98946 0.97549 0.96

11 3-11-3 0.99778 0.97628 0.96576 0.96462 0.56

12 3-12-3 0.99841 0.96607 0.99419 0.98483 0.35

13 3-13-3 0.99894 0.92785 0.98797 0.98257 0.24

14 3-14-3 0.99878 0.96995 0.97603 0.97895 0.25

15 3-15-3 0.9976 0.94919 0.97284 0.96715 0.74

 16  3-16-3  0.99672  0.96604  0.90578  0.99048  0.86 

17 3-17-3 0.99312 0.92741 0.99762 0.96687 0.57

18 3-18-3 0.99463 0.93931 0.90504 0.97432 0.47

19 3-19-3 0.99931 0.94446 0.95749 0.97995 0.12

 20  3-20-3  0.99525  0.97994  0.9573  0.98106  0.11 

 Table 2      Regression values and MSE calculated based on different 

network topologies.  
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5.1    Neural network performance 

 From Table  2  , although the overall regression is high 

(0.99048) for the network topology 3-16-3, the mean square 

error (MSE) is 8.6. However, for the architecture 3-20-3, the 

overall regression is 0.98106, which is marginally lower 

than the maximum value, but the MSE is 0.11, and hence, 

this architecture is finally considered. The plots between 

the number of iterations and the overall regression are 

shown in Figure  4  . The MSE obtained for different itera-

tions has been recorded and a plot for number of epochs 

and MSE for the topology is shown in Figure  5  . It is evident 

that the value of MSE gradually decreases during the pro-

gress of training. An error of 8.6 initially is reduced to 0.11 

after 20 iterations, and not much change has been found 

with further increase in the number of iterations.  

5.2    Regression analysis 

 Data analysis includes test for significance of the regres-

sion model and test for significance on model coefficients, 

and ANOVA was performed. The designed experimental 
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model for retardation in the form of ANOVA are given in 

Table  4  . 

 The value of R 2  was 91.93 % . This means that regres-

sion model provides an excellent explanation of the 

relationship between the independent factors and the 

response. The associated p-value for the model is   <  0.05 

(i.e.,  α   =  0.05, or 95 %  confidence interval), indicating that 

the model is considered statistically significant. Further, 

factors  A ,  B ,  C ,  AB , and the second-order term of factor 

 A  have significant effect. The result shows that thickness 

Run Thickness 

(mm)

Mass 

(N)

Height of 

fall (m)

Retardation at 

maximum load (m/s 2 )

Penetration at 

maximum load (mm)

Energy at 

maximum load (J)

1 2 35.32 0.5 571.44 4.889 14.584

2 4 35.32 1 1231.44 7.758 31.87

3 4 25.505 1 1604.998 9.302 25.173

4 4 15.69 1 2209.252 15.002 15.547

5 2 35.32 1.5 1219.429 18.246 28.564

6 6 15.69 1.5 2802.69 4.050 23.38

7 2 25.505 1 856.264 14.258 20.428

8 6 35.32 0.5 1240.19 5.021 17.381

9 4 25.505 1 1604.998 9.302 25.173

10 4 25.505 1 1604.998 9.302 25.173

11 6 15.69 0.5 1812.69 5.906 7.763

12 4 25.505 1.5 1643.075 5.355 30.32

13 4 25.505 1 1604.998 9.302 25.173

14 4 25.505 0.5 1295.19 12.543 12.537

15 6 25.505 1 1720.959 2.925 25.211

16 6 35.32 1.5 1240.19 1.25 48.226

17 4 25.505 1 1604.998 9.302 25.173

18 2 15.69 0.5 1129.252 15.596 7.696

19 2 15.69 1.5 1250.19 26.915 22.275

20 4 25.505 1 1604.998 9.302 25.173

 Table 3      ANOVA table.  

layout is shown in Table  3  . To obtain accurate results, each 

combination of factors was repeated three times.  

5.3     Checking the adequacy of the developed 
model 

 The fit summary recommended that the quadratic model 

is statistically significant for the analysis of retarda-

tion at the maximum load. The results of the quadratic 

Source Sum of 

squares

df Mean 

square

F-value p-Value 

(p  >>  F)

Effect

Model 3.894E + 006 9 3.894E + 006 12.65 0.0002 Significant

Thickness ( A ) 1.437E + 006 1 1.437E + 006 42.00   <  0.0001 Significant

Mass ( B ) 1.370E + 006 1 1.370E + 006 40.06   <  0.0001 Significant

Height of fall ( C ) 4.439E + 005 1 4.439E + 005 12.98 0.0048 Significant

 AB 2.989E + 005 1 2.989E + 005 8.74 0.0144 Significant

 AC 6109.16 1 6109.16 0.18 0.6815 Insignificant

 BC 26,790.22 1 26,790.22 0.78 0.3969 Insignificant

 A  2 1.937E + 005 1 1.937E + 005 5.66 0.0386 Significant

 B  2 76,068.74 1 76,068.74 2.22 0.1667 Insignificant

 C  2 19,820.37 1 19,820.37 0.58 0.4641 Insignificant

Residual 3.420E + 005 10 34,200.30

Lack of fit 3.420E + 005 5 68,400.61

Pure error 0.000 5 0.000

Cor. total 4.236E + 006 19

   Table 4      ANOVA for response 1: retardation at maximum load (before elimination).  

  R 2   =  0.9193, adjusted R 2   =  0.8466.  
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 The adequacy of the model was checked using ANOVA. 

Based on this technique, if the calculated value of the F-ratio 

of the developed model does not exceed the standard tabu-

lated value of F-ratio for a desired level of confidence (say 

99 % ), then the model is considered to be adequate within 

the confidence limit. The variance ratio, denoted by F in 

the ANOVA tables, is the ratio of the mean square due to 

a factor and the error mean square. In a robust design, the 

F-ratio can be used for qualitative understanding of the 

rela tive factor effects. A high F-value means that the effect 

of that factor is large compared with the error variance. 

Thus, the larger the value of F, the more important is that 

factor in influencing the process response. 

 To fit appropriately the quadratic model for retarda-

tion, the insignificant terms are eliminated by backward 

elimination. The ANOVA table for the reduced quadratic 

model for retardation at maximum load is shown in 

Table  5  . 

 The reduced model results indicate that the model 

is significant (R 2  and adjusted R 2  are 89.32 %  and 85.50 % , 

respectively). The significant effects based on F - values, 

in descending order, are factor  A  (thickness), factor  B  

(impactor mass), factor  C  (height of fall),  AB , and the sec-

ond-order term of factor  A  (thickness). It can be seen that 

the regression model is fairly well fitted with the observed 

Source Sum of squares df Mean square F-value p-Value (p  > >   F) Effect

Model 3.784E + 006 5 7.568E + 005 23.41   <  0.0001 Significant

Thickness ( A ) 1.437E + 006 1 1.437E + 006 44.44   <  0.0001 Significant

Mass ( B ) 1.370E + 006 1 1.370E + 006 42.38   <  0.0001 Significant

Height of fall ( C ) 4.439E + 005 1 4.439E + 005 13.73 0.0024 Significant

 AB 2.989E + 005 1 2.989E + 005 9.25 0.0088 Significant

 A  2 2.345E + 005 1 2.345E + 005 7.25 0.0175 Significant

Residual 4.526E + 005 14 32,328.22

Lack of fit 4.526E + 005 9 50,288.35

Pure error 0.000 5 0.000

Cor. total 4.236E + 006 19

   Table 5      ANOVA for response 1: retardation at maximum load (after backward elimination).  

  R 2   =  0.8932  , adjusted R 2   =  0.8550.  
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 Figure 6    Illustration of factor effects on retardation.    
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 Figure 7    Effect of impactor mass and thickness on retardation.    

and mass are the most significant parameters for retarda-

tion at maximum load when compared with the height of 

fall because of higher F-value. The other model terms are 

said to be insignificant. 
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Source Sum of squares df Mean square F-value p-Value (p  >>  F) Effect

Model 633.07 9 70.34 11.65 0.0003 Significant

Thickness ( A ) 369.34 1 369.34 61.15   <  0.0001 Significant

Mass ( B ) 91.97 1 91.97 15.23 0.0030 Significant

Height of fall ( C ) 14.12 1 14.12 2.34 0.1573

 AB 30.69 1 30.69 5.08 0.0478 Significant

 AC 114.62 1 114.62 18.98 0.0014 Significant

 BC 2.592E-003 1 2.592E-003 4.291E-004 0.9839 Insignificant

 A  2 1.51 1 1.51 0.25 0.6277 Insignificant

 B  2 11.52 1 11.52 1.91 0.1973 Insignificant

 C  2 0.41 1 0.41 0.067 0.8009 Insignificant

Residual 60.40 10 6.04

Lack of fit 60.40 5 12.08

Pure error 0.000 5 0.000

Cor. total 693.47 19

   Table 6      ANOVA for response 2: penetration at maximum load (before elimination).  

  R 2   =  0.9129, adjusted R 2   =  0.8345.  

Source Sum of squares df Mean square F-value p-Value (p   >>   F) Effect

Model 1527.66 9 169.74 37.13   <  0.0001 Significant

Thickness ( A ) 80.74 1 80.74 17.66  0.0018 Significant

Mass ( B ) 409.14 1 409.14 89.50   <  0.0001 Significant

Height of fall ( C ) 861.26 1 861.26 188.41   <  0.0001 Significant

 AB 56.64 1 56.61 12.39 0.0055 Significant

 AC 40.06 1 40.06 8.76 0.0143 Significant

 BC 26.75 1 26.75 5.85 0.0361 Significant

 A  2 2.95 1 2.95 0.65 0.4403 Insignificant

 B  2 0.059 1 0.059 0.013 0.9115 Insignificant

 C  2 16.20 1 16.20 3.54 0.0892 Insignificant

Residual 45.71 10 4.57

Lack of fit 45.71 5 9.14

Pure error 0.000 5 0.000

Cor. total 1573.37 19

   Table 7      ANOVA for response 3: energy at maximum load (before elimination).  

  R 2   =  0.9709, adjusted R 2   =  0.9448.  

Source Sum of squares df Mean square F-value p-Value (p   >>   F) Effect

Model 620.74 5 124.15 23.90   <  0.0001 Significant

Thickness ( A ) 369.34 1 369.34 71.10   <  0.0001 Significant

Mass ( B ) 91.97 1 91.97 17.70 0.0009 Significant

Height of fall ( C ) 14.12 1 14.12 2.72 0.1215

 AB 30.69 1 30.69 5.91 0.0291 Significant

 AC 114.62 1 114.62 22.07 0.0003 Significant

Residual 72.73 14 5.19

Lack of fit 72.73 9 8.08

Pure error 0.000 5 0.000

Cor. total 693.47 19

   Table 8      ANOVA for response 2: penetration at maximum load (after backward elimination).  

  R 2   =  0.8951, adjusted R 2   =  0.8577.  
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 The main factors influencing retardation are plotted 

in Figure  6  . This plot is used to visualize the relation 

between the factors with the output response. There is 

a rapid increase in the retardation with an increase in 

the height of fall and thickness when compared with the 

effect of impactor mass. It is also evident that there is not 

much change in the retardation, whereas the impactor 

mass is increased from 15 to 30 N. The thickness of the 

laminates plays a vital role in increasing the retardation 

energy. 

 Figure  7   shows the estimated response surface for the 

retardation at maximum load in relation to the individual 

parameters of the impactor mass and laminate thickness. 

As can be seen from this figure, the retardation tends to 

increase slightly with an increase in impactor mass and 

increase steadily with an increase in laminate thickness. 

Because laminate thickness contributes to a higher level 

of bonding of layers, the rate of velocity decreases with an 

increase in thickness. 

 Similarly, the quadratic model for penetration and 

absorbed energy was developed. The results of the quad-

ratic model for penetration and absorbed energy in the 

form of ANOVA are given in Tables  6   and  7  . 

 To fit appropriately the quadratic model for penetra-

tion, the non-significant terms are eliminated by backward 

elimination. The ANOVA table for the reduced quadratic 

Source Sum of squares df Mean square F-value p-Value (p   >>   F) Effect

Model 1407.78 4 351.94 31.88   <  0.0001 Significant

Thickness ( A ) 80.74 1 80.74 7.31 0.0163 Significant

Mass ( B ) 409.14 1 409.14 37.06   <  0.0001 Significant

Height of fall ( C ) 861.26 1 861.26 78.01   <  0.0001 Significant

 AB 56.64 1 56.64 5.13 0.0387 Significant

Residual 165.60 15 11.04

Lack of fit 165.60 10 16.56

Pure error 0.000 5 0.000

Cor. total 1573.37 19

   Table 9      ANOVA for response 3: energy at maximum load (after backward elimination).  

  R 2   =  0.8948, adjusted R 2   =  0.8667.  
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 Figure 9    Effect of impactor mass and thickness on penetration.    
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 Figure 8    Illustration of factor effects on penetration.    

values. After eliminating the insignificant terms, the final 

response equation for retardation at maximum load is 

given in the following: 

 Retardation at maximum load  =  1600.89 + 379.01

   ×   A -370.14  ×   B  + 210.68  ×   C -193.30  ×   A  ×  B -265.42  ×  A 2   (20) 
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model for penetration at maximum load is shown in Table 

 8  . The equation in terms of coded factors after backward 

elimination is 

 Penetration at maximum load  =  9.78-6.08

   ×   A -3.03  ×   B  + 1.19  ×   C  + 1.96  ×   A  ×  B -3.79  ×   A  ×  C   (21) 

 The factors influencing penetration at maximum load 

is plotted in Figure  8  . This plot is used to visualize the 

relation between the factors with the output response. 

There is a rapid increase in penetration only when there 

is an increase in the height of fall. The other two factors 

show resistance to penetration. Figure  9   shows the esti-

mated response surface for the penetration in relation to 

the individual parameters of the thickness of the lami-

nate and the impactor mass. As can be seen from this 

figure, the penetration tends to increase steadily with an 

increase in impactor mass and tends to decrease with an 

increase in the thickness of the laminates because the 

thickness of the laminates contributes to the rebounding 

of the dart. 

 To fit appropriately the quadratic model for absorbed 

energy, the non-significant terms were eliminated by 

backward elimination. The ANOVA table for the reduced 

quadratic model for energy at maximum load is shown in 

Table  9  . 

 The reduced model results indicate that the model is 

significant (R 2  and adjusted R 2  are 89.48 %  and 86.67 % , 

respectively). The significant effects based on F-values, 

in descending order, are factor  C , factor  B , factor  A , and 

factor  AB . 

 It can be seen that the regression model is fairly well 

fitted with the observed values. The equation in terms of 

coded factors after backward elimination is 

 Energy at maximum load  =  22.84 + 2.84  ×   A  + 6.40  ×   B  + 9.28

   ×   C  + 2.66  ×   A  ×  B   (22) 

 The factors influencing energy at maximum load is 

plotted in Figure  10  . There is a rapid increase in energy 

at maximum load with an increase in height of fall when 

compared with the other two factors. It is also evident 
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 Figure 11    Effect of impactor mass and thickness on energy at 

maximum load.    
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 Figure 10    Illustration of factor effects on absorbed energy.    

that there is a slight change in the absorbed energy 

when the impactor mass is increased. Figure  11   shows 

the estimated response surface for the absorbed energy 

at maximum load in relation to the individual parame-

ters of laminate thickness and impactor mass. As can be 

seen from this figure, the energy tends to increase stead-

ily with an increase in impactor mass and no significant 

change with an increase in laminate thickness. Because 

the impactor mass contributes to the increase in velo-

city, the absorbed energy increases with an increase in 

the impactor mass.   

6    Conclusions 

 A new methodology based on ANNs has been developed 

to study the low-velocity impact characteristics on woven 

glass epoxy laminates of EP3 grade. The following con-

clusions are drawn from the results of the BPNN model 
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and statistical analysis. Based upon the correlation 

coefficient, error distribution, and convergence, differ-

ent BPNN architectures are trained/analyzed using the 

experimental data until an optimum architecture was 

identified. Among them, the BPNN with one hidden layer 

having 20 neurons trained with Levenberg-Marquardt 

algorithm was found to be the optimum network model 

(3-20-3). An error of 8.6 initially is reduced to 0.11 after 

20 iterations, and not much change has been found with 

further increase in the number of iterations. A sound per-

formance was achieved with the neural network model, 

with good correlation coefficient (between predicted and 

experimental values), high uniform error distribution, 

and the convergence of the entire data set within the per-

missible error range. 

 From the empirical modeling and with help of RSM, it 

was observed that the retardation tends to increase slightly 

with an increase in impactor mass and steadily increase 

with an increase in laminate thickness. It was seen that 

the height of the fall of the impactor has been less sig-

nificant on retardation when compared with laminate 

thickness. Penetration tends to increase steadily with an 

increase in impactor mass and decreases with an increase 

in laminate thickness. There is a rapid increase in energy 

at maximum load with an increase in impactor mass when 

compared with the other two factors. It is also evident that 

there is a slight change in the absorbed energy when the 

thickness is increased. Finally, the developed mathemati-

cal model successfully predicted the output parameters of 

laminates subjected to low-velocity impact.    
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