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NROI based feature learning for Automated Tumor Stage Classification of

pulmonary lung nodules using Deep Convolutional Neural Networks

Abstract

Identifying the exact pulmonary nodule boundaries in computed tomography (CT) images are crucial tasks to
computer-aided detection systems (CADx). Segregation of CT images as benign, malignant and non-cancerous
is essential for early detection of lung cancers to improve survival rates. In this paper, a methodology for automated
tumor stage classification of pulmonary lung nodules is proposed using an end-to-end learning Deep Convolutional
Neural Network (DCNN). The images used in the study were acquired from the Lung Image Database Consortium
and Infectious Disease Research Institute (LIDC-IDRI) public repository comprising of 1018 cases. Lung CT images
with candidate nodules are segmented into a 52x52 pixel nodule region of interest (NROI) rectangle based on four
radiologists’ annotations and markings with ground truth (GT) values. The approach aims in analyzing and extract-
ing the self-learned salient features from the NROI consisting of differently structured nodules. DCNN are trained
with NROI samples and are further classified according to the tumor patterns as non-cancerous, benign or malignant
samples. Data augmentation and dropouts are used to avoid overfitting. The algorithm was compared with the state
of art methods and traditional hand-crafted features like the statistical, texture and morphological behavior of lung
CT images. A consistent improvement in the performance of the DCNN was observed using nodule grouped dataset
and the classification accuracy of 97.8%, the specificity of 97.2%, the sensitivity of 97.1%, and area under the receiver
operating characteristic curve (AUC) score of 0.9956 was achieved with reduced low false positives.

Keywords: Deep learning, Convolutional neural network, Segmentation, Data augmentation, Dropouts.

1. Introduction

Lung cancer is one of the major widespread diseases worldwide leading to high death rates among other

types of cancer. According to statistics 2019 in the United States, nearly 228,150 new lung and bronchus

cancer individuals and 142,670 deaths were estimated by the American Cancer Society (Siegel et al., 2019).

In order to increase survival rates, the early detection of lung cancer plays a crucial role. Particularly,

identifying the pulmonary nodules in the early stages requires radiologist’s attention to a greater extent as

the nodule densities may have similar anatomical properties to that of the other lung structures (Xiuhua

et al., 2011).

However, computer-aided diagnosis/computer-aided detection systems were considered as an alternative

approach for automated pulmonary nodule detection to help radiologists overcome the issues with conven-

tional reading (Jacobs et al., 2014). Identifying the exact candidate nodule boundaries in CT images are

crucial tasks to CADx due to the similar visualization characteristics of candidate nodules and its surround-

ings. In addition, extracting the salient features of candidate regions plays a vital role. Usually, features

are extracted using traditional hand-crafted features or deep learning methods (deep neural networks) for

pulmonary lung nodule classification. Traditional hand-crafted features include statistical, texture, density

and morphological behavior and are further classified using few classification techniques. The existing CADx

systems are in need to design these features as an essential model. But the process is time consuming and
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complicated (Roth et al., 2016). Moreover, the features are to be correlated to obtain expected performance

measures. In addition, reducing false positives play a vital role in nodule classification increasing sensitivity

rates.

Recently, many researchers have developed architectures to automatically learn and extract feature maps

(da Silva et al., 2017; Tajbakhsh & Suzuki, 2017; Yuan et al., 2018) using deep learning techniques. These

techniques are used to detect and classify candidate lung nodules without considering manually extracted

texture features (Wang et al., 2017b,a; Wikipedia contributors, 2018). Learning features from architectures

with multiple layers and hierarchical models of input data like deep neural network/hybrid structures are

the trend changing concepts in the recent past. The study results show that deep neural network algorithms

can outperform compared to traditional machine learning concepts (Lu et al., 2018; Rastegari et al., 2016).

Recent advances in deep neural networks involve the concept of parallel computing with more accessibility

and affordability in using graphics processing units for training huge annotated datasets. Many researchers

made progress in training and classifying huge datasets using deep learning algorithms for pattern recognition

(Zhang et al., 2019; Wang et al., 2018). This led to substantial advancements in using deep neural network

algorithms for medical imaging applications as well (Tan et al., 2017).

In the study, we incorporate an end-to-end DCNN architecture for candidate nodule feature extraction

and classification according to the malignancy suspiciousness. The NROI is extracted, trained and tested

using DCNN and each detected candidate nodule is classified according to stages of malignancy suspiciousness

as normal (non-cancerous), benign (level 1 or 2 ), and malignant (level 4 or 5).

The paper is organized as follows. Section 2 describes the related works. Section 3 describes the method-

ology used to segment and classify candidate nodules as benign, malignant or non-cancerous, using the

extracted features from traditional hand-crafted methods and deep convolutional neural networks. Section

4 illustrates the experiments and evaluation of the proposed method. Section 5 discusses the results.

2. Related Work

The lung nodule detection systems with nodule segmentation, feature extraction, and nodule classification

have certain challenging tasks to overcome as discussed previously. In this section, the previous works

related to the proposed method are discussed. Most studies related to lung cancer diagnosis not only relay

on extracted features from traditional hand-crafted methods but also use automated end-to-end learned

features. In order to organize the related work more precisely, we separated the related works into two

groups: Group 1 - Works related to traditional hand-crafted based feature extraction. Group 2 - Works

related to deep convolutional neural network-based feature extraction.

2.1. Group 1 - Works related to traditional hand-crafted based feature extraction

Wu et al. (2013) designed a methodology to differentiate malignant from benign samples using a combi-

nation of texture and radiological features. A total of 13 gray level co-occurrence matrix (GLCM) texture
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features and 12 radiological features were extracted from 2117 CT slices (116 malignant and 86 benign). The

extracted features were classified using back propagation neural network (BPNN) neural networks resulting

in a receiver operating characteristic curve (ROC) of 0.91.

de Carvalho Filho et al. (2014) developed a methodology to automatically detect the candidate pulmonary

nodules by enhancing the images using quality thresholding. Candidate nodules were segmented using

region growing methods. The shape and texture features were extracted using genetic algorithms and

further classified using SVM classifiers. A total of 140 new exams were collected from Lung Image Database

Consortium (LIDC) dataset achieving an accuracy of 97.55%, a sensitivity of 85.91% and a specificity of

97.70%.

Table 1: Works related to traditional hand-crafted based feature extraction

Research Papers Objective Image Database No. of Images
Implementation

Key difference
Results

Wu et al. (2013) Nodule Classification LIDC
2117 CT slices
116 - malignant
86 - benign

Combination of 13 texture
and 12 radiological features
BPNN

ROC curve of 0.91

de Carvalho Filho et al. (2014) Nodule detection LIDC 140 new exams

Quality Thresholding
Region Growing segmentation
Shape and texture based
feature extraction using
genetic algorithm
SVM classifiers

Accuracy - 97.55%
Sensitivity - 85.91%
Specificity - 97.70%
Time Complexity - 13.56 min

Orozco et al. (2015) Nodule Classification LIDC and ELCAP
61 images
36 - nodules
25 - non-nodules

Feature extraction - wavelet based
19 GLCM features
SVM classification

Accuracy - 82%
Sensitivity - 90.90%
Specificity - 73.91%

de Carvalho Filho et al. (2017) Nodule Classification LIDC
1403 images
394 - malignant
1011 - benign

Feature extraction:
Phylogenetic diversity index
and genetic algorithms

Accuracy - 92.52%
Sensitivity - 93.1%
Specificity - 92.26%

Orozco et al. (2015) proposed a lung nodule classification scheme using wavelet feature-based descriptor

classified using SVM classifiers. A total of 19 GLCM features were extracted from the frequency domain

sub-bands. The datasets used in the study were extracted from the Early Lung Cancer Action Program

(ELCAP) and LIDC containing 61 images (36 nodules and 25 non-nodule images). The system achieved an

accuracy of 82%, sensitivity of 90.90%, specificity of 73.91%.

de Carvalho Filho et al. (2017) further extracted the texture features using phylogenetic diversity index

and genetic algorithms for lung nodule classification. A total of 1403 nodule images (394 malignant and

1011 benign) from the LIDC dataset were used in the study resulting in an accuracy of 92.52%, sensitivity

of 93.1% and specificity of 92.26%.

2.2. Group 2 - Works related to deep convolutional neural network-based feature extraction

de Carvalho Filho et al. (2018) proposed a classification approach differentiating the patterns of benign

and malignant samples using topology-based phylogenetic diversity index on CT images. For classifying the

extracted features, CNN methods were used. LIDC image dataset comprising 1405 nodules (394 malignant
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and 1011 benign nodules) were used in the study achieving an accuracy of 92.63%, the specificity of 93.47%,

the sensitivity of 90.7% and Area under ROC of 0.934.

Xie et al. (2018), texture, shape and deep model-based learned information (FuseTDS) were used for

classifying the lung nodules. The methodology employed GLCM based texture features, Fourier shape

features for characterizing the heterogeneity of lung nodules and DCNN to automatically learn the nodules

features slice-by-slice. Each feature is trained using Adaboost BPNN. The three classifiers were fused to

differentiate the candidate lung nodules. The algorithm was evaluated against the LIDC-IDRI image dataset

consisting of 1972 nodules (1323 benign and 648 malignant), The algorithm achieved an AUC of 96.65%,

accuracy of 89.53%, the sensitivity of 84.19% and specificity of 92.02%.

Table 2: Works related to deep convolutional neural network based feature extraction

Research Papers Objective Image Database No. of Images
Implementation

Key difference
Results

de Carvalho Filho et al. (2018) Nodule Classification LIDC
1404 nodules
394 - malignant
1011 - benign

Topology based Phylogenetic
diversity index classification - CNN

Accuracy - 92.63%
Sensitivity - 90.70%
Specificity - 93.47
ROC curve of 0.934%

Xie et al. (2018) Nodule Classification LIDC
1972 nodules images
648 - malignant
1324 - benign

FuseTDS fuses texture, shape and
deep model learning
crops a 64x64 square region
with candidate nodules embedded
GLCM based feature descriptor
Fourier shape descriptor
Feature extraction - DCNN
Adaboost BPNN for training

Accuracy - 89.53%
Sensitivity - 84.19%
Specificity - 92.02%
ROC curve of 96.65%

Jiang et al. (2018) Nodule detection LIDC 1006 scans
Images enhanced using Frangi filter
Nodule detection using 4 channel CNN
(Multi - group based learning)

Sensitivity - 80.6% with FP of 4.7
Sensitivity - 94% with FP of 15.1

Xie et al. (2019) Nodule detection LUNA 16
150414 images
339 - nodules
150075 - non-nodules

Nodule detection - Deconvolutional
false positive reduction using 2D CNN

Sensitivity - 86.42%

Huang et al. (2019) Nodule detection LUNA16
888 CT scans
223 nodules

Nodule detection - Faster region CNN
CNN for false positive reduction and
candidate merging
Segmentation - customised fully CNN

Accuracy - 91.4% with FP of 1
Accuracy - 94.6% with FP of 4

Lakshmanaprabu et al. (2019) Nodule classification LIDC

70 images
Normal - 27
Benign - 21
Malignant - 22

Optimal Deep Neural Network (ODNN)
Feature extraction - Linear Discriminate
Analysis
Classification - Modified gravitational
search algorithm

Accuracy - 94.56%
Sensitivity - 96.2%
Specificity - 94.2%

Jiang et al. (2018) proposed a multi-group based learning system for lung nodule detection. 1006 scans

from LIDC datasets were enhanced by the Frangi filter. The nodules were detected through a 4 channel

CNN resulting in a sensitivity of 80.06% with false positives of 4.7 per scan and sensitivity of 94% with false

positives of 15.1 per scan.
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Xie et al. (2019) developed an automated candidate nodule detection scheme using a faster region-

based convolutional neural network. Deconvolutional layers were used to detect the candidate nodules. In

order to reduce false positives, 2D CNNs were employed in the study. Experiments were conducted on

total candidates of 150414 ( 339 nodule images and 150075 non-nodule images) from LUNA 16 datasets

for training. Candidates were labeled with class 0 for non-nodules and 1 for nodule images. The system

exhibited a nodule detection sensitivity of 86.42%.

Huang et al. (2019) designed an end-to-end fully automated framework to precisely segment candidate

nodule contours from CT images. The methodology involves 3 major phases. 1) Faster regional CNN to

detect the candidate nodules 2) CNN for false-positive reduction and candidate merging 3) nodule segmen-

tation using customized fully CNN. The experiments were conducted on 888 CT scans having 223 nodules

from LUNA 16 image datasets and resulted in an accuracy of 91.4% with false positives 1 per scan and 94.6%

with false positives of 4 per scan.

Lakshmanaprabu et al. (2019) proposed an optimal automated classification method using Optimal Deep

Neural Network (ODNN) and Linear Discriminate Analysis (LDA). The deep extracted features from lung

nodules were reduced using LDA. The candidate nodules were further classified using Modified gravitational

search algorithm (MGSA). 70 images were used for training (Normal - 27, Benign - 21, Malignant - 22) and

30 images were used for testing (Normal - 8, Benign - 11, malignant - 11) resulting in an accuracy of 94.56%,

the specificity of 94.2% and sensitivity of 96.2%.

From the concept of unique feature learning from hierarchical neural network layers, CNN models are

beneficial for image segmentation and classification exhibiting encouraging results in medical imaging. All

the above methods exhibit promising results related to accuracy and sensitivity but few approaches result

in high false positives either per scan or per patient or per-image basis, in turn, affecting the performance

of classification accuracy. However, there do exist some uncertainties to CNN approaches in modeling

heterogeneous lung CT volumes acquiring datasets with enough samples for training. Most of the methods

discussed do not have an equal number of image samples for each class of malignancy categorized resulting in

overfitting. Designing the neural network hierarchy for capturing 2D features of candidate nodule regions are

to be explicitly addressed. In summary, several methods exhibit potential progress in the field of lung nodule

detection, segmentation, and classification but still needs improvement to overcome the challenging issues

like detection of irregularly structured nodules based on the shape, varying size, and location identification,

high sensitivity rates by reducing low false positives, providing robust technologies applicable across multiple

databases.

In summary, Table 1 and 2 represents the works related to traditional hand-crafted based feature extrac-

tion and deep convolutional neural network methods respectively.
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Figure 1: Architecture of the proposed method

3. Methodology

In this paper, a novel approach for automated tumor stage classification of pulmonary nodules differen-

tiating malignant from benign and non-cancerous lung nodules is proposed. The algorithm is summarised

in Figure 1. For comparison, four variants of features are extracted from each lung nodule CT image. Three

are from traditional hand-crafted methods - statistical, texture and morphological based features classified

using SVM classifiers. One learned from 8 layered deep convolutional neural networks. The self-learned

extracted features are trained and tested using CNN’s to reduce false positives.

3.1. Data Acquisition

All the images used in the study are collected from the publically available repository Lung Image

Database Consortium and Infectious Disease Research Institute dataset consisting of 1018 CT scans with

marked-up annotations by 4 expert radiologists (Armato III, 2015; Jacobs et al., 2016). Images from the

LIDC-IDRI datasets are of 512 x 512 dimensions in size. Each CT slice thickness varies from 1.25 mm

to 3mm with nodule diameters varying from 3mm to 30mm indicating the malignancy suspiciousness from

levels 1 to 5. CT scan images are pre-processed to uniquely segment the NROI in correspondence to four

Radiologists’ annotations and markings. An XML file is associated with each case of CT scans and a two-

phase annotation process was held by four radiologists to distinguish the suspicious nodules. Each radiologist

reviewed and labeled the nodules/lesions to one of the three key categories: nodule greater than or equal to

3mm, non-nodule larger than 3mm, nodule less than 3mm. Each individual annotations are read from the

XML files and their corresponding locations in DICOM images are traced and cropped. The dataset images
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are segmented based on these traced annotations in correspondence to the malignancy levels, extracting the

nodule area in each slice into a 52x52 pixel rectangle converted into a TIF image format for easier processing

Lampert et al. (2016). Nodules with ambiguous ’IDs’ and samples with malignancy levels 3 are eliminated

in the study to distinguish the pulmonary nodules better. Overall, a total of 1279 samples are used in the

experiments with 278 benign (LMNs), 432 malignant (HMNs) and 569 non-cancerous samples.

Figure 2: CT image with small bottom left lung nodule highligted in ’red’ annotated by four expert radiologists and their

corresponding GTs

3.2. Nodule extraction and Segmentation

Candidate nodule regions are extracted slice-by-slice using the marked-up annotations and their corre-

sponding GT values from datasets. Figure 2 shows the CT image with lung nodule highlighted in ’red’

annotated by four expert radiologists and their corresponding GTs. Each annotation in the XML file corre-

sponding to the candidate nodule is segmented according to their malignancy levels. The candidate nodule’s

pixel values are retained using the masks meanwhile the rest are padded with zero, forming NROI ’Tiff

image’ of size 52x52 pixel rectangle. All the information concerning to the nodule structures along with its

shapes and sizes are extracted efficiently fitting the pulmonary nodule in the rectangle frame. In case the

nodule size exceeds the 52x52 rectangle size, down-sampling is applied to the large nodules to fit into the

rectangle. Figure 3 shows few NROI images and their corresponding candidate nodules highlighted in ’red’.

3.3. Feature Extraction

3.3.1. Deep convolutional neural network-based feature extraction

In order to automatically learn the features from NROI, an 8 layered Convolutional Neural Network

was constructed. Since each candidate nodules have varying sizes and shapes, a template was generalized

with each region of interest (ROI) resized into a 52 x 52-pixel rectangle as input to DCNN. Rather than

considering the entire dataset images of size 512x512 for training the neural network, only the NROI rect-

angle was used to improve the processing time, storage capability, and extract relevant features maps to
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Figure 3: Few NROI images and their corresponding candidate nodules

understand the characteristics captured by DCNN better. The NROI with candidate nodules identifies the

majority of contributions towards prediction by considering the importance of the tissues surrounding the

candidate nodules increasing the classification accuracy with low false positives. The network filters, feature

maps, input image sizes are tuned by DCNN architecture for better pulmonary nodule classification accuracy.

Thus the augmented NROI of size 52 x 52 image patches is passed as input to the input layer of DCNN.

CNN’s have three layers 1) Convolutional layers 2) Pooling layers 3) Fully connected layer. The architecture

incorporated in the study consists of three convolutional layers and three sub-sampling layers intercepted

with max-pooling, Rectified linear unit (ReLu) and batch normalization for salient feature extraction and

finally a fully connected layer connected to 3 neurons classifying input patterns to one of the categories of

classes as benign, malignant, and non-cancerous. Figure 4 represents the structure of the DCNN.

The first convolutional layer has 12 filters of size 5x5 feature maps connected to the input layer. The

second layer has 8 filters of size 5x5 connected to the previous layer (12x8 = 96 5x5 filters). The third

layer has 6 filters of size 5x5 (8x6 = 48 5x5 filters) used from the previous layer. Each filter produces a

2D image output of 12x48x48 images from the first convolutional layer as shown in Figure 4. The number

of filters used may be varied to optimize the classification accuracy during training. The last layer before

the output layer(eight layers), which is the fully connected layer has the input shrunk to 3x3 matrices using

softmax non-linear functions having 3 output neurons that fall into one of the 3 categories of classes benign,

malignant or non-cancerous nodules. Fully connected implies that every neuron in one layer is connected to

the same location at the other layers. As a result, each neuron receives input as linear combinations from its

corresponding neurons with a set of input weights and bias in the previous layer. Finally, the output layer

provides the strength of the network prediction for each possible category of classes. The output of each
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Figure 4: Structure of the DCNN

Table 3: Tested combinations of input parameters for the DCNN Architecture.

Input Parameters Values

# of Layers 4, 6, 8, 10, 12
# of kernels 32, 16, 12, 8, 6
Learning rate(Alpha) 0.01, 0.1
Kernel size 3, 5

layer in the CNN architectures was normalized, whitened to enhance the contrast before it was sent to the

next layer Hyvärinen & Oja (2000).

Each convolutional layer is followed by a max-pooling layer of size 2x2 (stride of 2) that reduces the size

of the input patch by half with maximum intensity values in the non-overlapping window thus reducing the

computational cost and helps maintain the neural network unchanged to any translations, transformations,

and distortions on the input patches. Rectified linear unit in the sub-sampling layer is applied to each pixel

in the input patch replacing all negative values in the feature maps to 0 and preserving only non-negative

pixel values for further processing. Dropouts are used in architecture to prevent overfitting. Also while

training the network, a change in the distribution of data was observed with gradient values (trending to

decrease), hence batch normalization was incorporated in the algorithm making each layer independently

learn more and align the data distribution more efficiently for the other layers. To optimize the performance

of DCNN, adaptive moment estimation (Adam) optimizer (Wikipedia contributors, 2019; Kingma & Ba,

2014) was employed with a learning rate of 0.1. The number of iterations was set to 50 with a batch size of

100 and a sub-sampling rate constantly set to 2 in the study. A systematic analysis was conduct against

varying input parameters like the convolution filter sizes, learning rates and the number of layers in the

architecture. Table 3 shows the tested combinations of input parameters for the DCNN Architecture.
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Table 4: Traditional handcrafted features used in the study for comparison.

Category Features extracted

Texture GLCM

1) Contrast, 2) Correlation, 3) Energy, 4) Entropy, 5) Homogeneity,
6) Autocorrelation, 7) Cluster Prominence, 8) Cluster shade,
9) Inverse difference, 10) Difference in entropy, 11) Sum entropy,
12) Difference in variance, 13) information measure on correlation1,
14) information measure on correlation2, 15) Dissimilarity, 16) Max
probability, 17) Sum average, 18) Sum variance

Statistical
19) Mean, 20) Standard deviation, 21) Variance, 22) Skewness,
23) Kurtosis

Morphological 24) Area, 25) Perimeter, 26) Eccentricity

3.3.2. Traditional hand-crafted based feature extraction

For comparison purposes, we adapted statistical, texture and morphological based descriptors as described

in Table 4 for characterizing the heterogeneity of candidate nodule voxel values from the same NROIs. A

total of 26 features were extracted manually from traditional hand-crafted methods defining discriminative

features. All features were combined and trained using SVM classifiers for the same categories of classes

specified as non-cancerous, benign or malignant. The features extracted like area, perimeter, eccentricity,

contrast, correlation, energy, entropy, homogeneity, sum average, and sum entropy plays a prominent role in

nodule classification. These features are correlated to obtain expected performance measures.

3.3.3. Data Augmentation

Data augmentation is one of the techniques used to overcome the problems related to database overfitting.

To improve classification accuracy, the database images were rotated with a fixed angle (90,180,270) and

translated in a range of [-3 3] forming training datasets of image samples to overcome the limitations in

terms of limited labeled datasets by radiologists. Also, in order to have an equal number of image samples

for each class of malignancy suspiciousness - Data augmentation techniques were employed. Further, on the

balanced dataset of candidate nodules, the DCNN were well-trained on features extracted as per the learning

parameters.

3.3.4. Nodule Classification

Based on the nodule marked-up annotations by expert radiologists, each suspicious nodule greater than

or equal to 3mm is categorized into one of the 5 stages of malignancy levels ranging from 1 to 5. Malignancy

levels 1 and 2 samples are combined forming benign samples labeled as low malignancy nodules (LMNs) with

”Nodules >= 3mm with Malignancy level 1 and 2”. Malignancy levels 4 and 5 samples are combined forming

malignant samples labeled as high malignancy nodules (HMNs) with ”Nodules >= 3mm with Malignancy

level 4 and 5”. Samples with non-nodules greater than 3 mm and nodules less than 3mm are categorized as

non-cancerous samples. Further, all the augmented NROI images are trained and tested using DCNN and

are then classified into one of the 3 categories of classes specified according to the probability scores for each

input as non-cancerous, benign or malignant samples.
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Table 5: Performance measure on 3 LIDC datasets

Dataset Category
Images with

Malignancy levels
No. of Nodules

Total

Nodules

Accuracy

with DCNN

Accuracy

with Traditional hand

crafted method

D1

Benign 1,2 278

1279 93.46% 91.10%
Malignant 4,5 432

Non-Cancerous - 569

D2

Benign 1,2,3 507

1508 87.91% 85.43%
Malignant 4,5 432

Non-Cancerous - 569

D3

Benign 1,2 278

1508 71.90% 68.86%
Malignant 3,4,5 661

Non-Cancerous - 569

4. Experiments and Evaluation metrics

A detailed analysis of modeling the LIDC datasets based on the nodule malignancy levels was integrated

into the study. The methodology was evaluated on 3 LIDC datasets using 10-fold cross-validation as shown

in Table 5. The classification of nodules with D1 dataset was easy compared to the other 2 datasets as ma-

lignancy level 3 images were eliminated to distinguish the pulmonary nodules better. Also, the table depicts

a high classification accuracy of 93.46% with DCNN compared to the traditional hand-crafted statistical and

texture-based descriptors. For datasets, D2 and D3 having intermediate malignancy level 3 nodules either

labeled as benign (LMNs) or malignant (HMNs) increased the difficulty in classifying the nodules.

Table 6: DCNN architecture performance measure using Adam Optimizer.

# of Layers Architecture Alpha Kernel size
Accuracy

epoch 20 epoch 30 epoch 40 epoch 50 epoch 100

8 12, 8, 6 0.1 5, 5, 5 0.913 0.919 0.919 0.934 0.919
8 12, 8, 4 0.1 5, 5, 5 0.904 0.906 0.910 0.914 0.915
8 12, 8, 6 0.1 5, 5, 3 0.904 0.906 0.906 0.911 0.903
8 12, 8, 4 0.1 5, 5, 3 0.885 0.910 0.900 0.899 0.921
10 12, 8, 6, 4 0.1 5, 5, 5, 5 0.915 0.900 0.899 0.910 0.900

Table 7: DCNN architecture performance measure using Sgdm Optimizer.

# of Layers Architecture Alpha Kernel size
Accuracy

epoch 20 epoch 30 epoch 40 epoch 50 epoch 100

8 12, 8, 6 0.1 5, 5, 5 0.885 0.890 0.893 0.899 0.899
8 12, 8, 4 0.1 5, 5, 5 0.895 0.898 0.894 0.893 0.894
8 12, 8, 6 0.1 5, 5, 3 0.885 0.905 0.899 0.904 0.919

8 12, 8, 4 0.1 5, 5, 3 0.881 0.883 0.885 0.885 0.889
10 12, 8, 6. 4 0.1 5, 5, 5, 5 0.881 0.890 0.896 0.885 0.889

The DCNN architecture with Adam training optimizer was tested upon different configurations of input

parameters with performance values all above 88.5%, with a maximum classification accuracy of 93.46%

as shown in Table 6. We also evaluated if there is any drastic change in performance measurements when

the number of neurons varies in the hidden layers. But the variations in performance were quite stable and

less than 0.4% for certain kernel size in correspondence to a particular epoch value. Finally, based on the
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experiments, we fixed the hidden layer’s neurons as [12, 8, 6] with the kernel size of [5, 5, 5] due to their

relative stability while continuing our experiments.

In addition, the experiments were repeated to train CNN using Stochastic gradient descent momentum

(sgdm) optimizer (Wikipedia contributors, 2019) having the configurations to evaluate its performance

as shown in Table 7. The classification accuracy for all the tested combinations of input parameters using

sgdm optimizer were all above 88.1%, with a maximum value of 91.9% as highlighted.

Figure 5: Nodule diagnosis by 4 expert radiologists

Figure 6: Images false positively accepted as HMNs

To improve the performance of the existing methodology, we interpreted the inconsistency raised in

the nodule classification. The features extracted from the statistical and texture based descriptors were

observed with overlapping values. In order to identify the inconsistency raised with candidate nodules

having malignancy levels ranging from 1 to 5, a detailed study on marked-up annotations was held. While
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interpreting certain cases, the same candidate nodule region may be evaluated as malignancy level ranging

from 1 to 5 by four different radiologists for the same CT scan. Example: One radiologist evaluates the

candidate region as malignancy level 5 while the other radiologists have evaluated the same candidate region

as malignancy level 3 and 4 correspondingly as shown in Figure 5. Due to incorrect malignancy suspiciousness,

false categorizing the segmented images as benign or malignant samples resulted in low-performance accuracy

overall exhibiting false positive classification of candidate nodule regions. To overcome the limitation, nodule

grouping was manually performed to reduce the misclassification by considering the statistical and texture

based descriptors. The images with overlapping texture and statistical features values were recognized

and segregated according to their malignancy levels manually by replacing the candidate nodules in their

corresponding categories.

Figure 7: Images false positively accepted as LMNs

In addition, some candidate regions may be false positively considered as nodules by radiologists in their

reviews with images close to the ribs, vessels or walls of the chest. The procedures in identifying features

are time-consuming and may not guarantee good results if correlations between features are not properly

considered. In most of the cases, machine learning models evaluate nodules by considering the ”size” as

a characteristic feature to distinguish between benign or malignant but not taking into consideration large

variations of nodule patterns. However, dependence on the nodule size led to misclassification of small

candidate nodules as benign and large candidate nodules as malignant in some cases. However, few candidate

nodule regions were true positively considered as HMNs which were supposed to be true positively accepted

as LMNs as depicted in Figure 6. Similarly, Figure 7 represents a few candidate nodule regions true positively
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considered as LMNs but were supposed to be accepted as HMNs with high probability. Thus by grouping

the nodules according to their patterns and malignancy levels, a total of 70 misclassified samples were

potentially identified and tested in phases. In addition, the experiments were repeated to train the DCNN

using stochastic gradient descent with momentum (sgdm) optimizer with the same input size, the number of

layers (depth), same convolution filters to evaluate its performance. As a result, the methodology achieved

good promising results with Adam optimizer compared to Sgdm as shown in Figure 8.

Figure 8: Proposed methodology tested using ’Adam’ and ’Sgdm’ optimizer

Table 8: Experiments conducted on the nodule grouped LIDC dataset

LIDC Dataset Methodology
Classification

Accuracy

Initial Dataset
Traditional hand-crafted

features
91.10%

DCNN 93.46%

Nodule Grouped Dataset
Traditional hand-crafted

features
95.47%

DCNN 97.8%

A consistent improvement in the performance of the DCNN was observed using a nodule grouped dataset

resulting in the highest classification accuracy of 97.8% when compared to the initial dataset images as shown

in Table 8. Also, the performance of the DCNN is compared with the traditional hand-crafted methods

for both datasets. In addition, the methodology is highlighted with datasets used and the results obtained

from DCNN method are compared with related works as shown in Table 9. An accurate comparison is

evaluated in terms of performance metrics with de Carvalho Filho et al. (2018), Xie et al. (2018), and

Lakshmanaprabu et al. (2019). The proposed DCNN algorithm achieved the highest accuracy, sensitivity,

specificity, and ROC on a balanced dataset resulting in better classification of nodules with reduced low false

positives compared to other methods. Few methods use smaller datasets or may do not have an equal number

of image samples for each class, which reduces the reliability for comparison. For performance evaluation, the

balanced augmented image datasets with equal number of image samples are used in the study. The training
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Table 9: Comparison of results with related works

Research papers Image Database No. of images Accuracy Specificity Sensitivity ROC

de Carvalho Filho et al. (2018) LIDC
1404 nodules
394 - malignant
1011 - benign

92.63% 93.47% 90.70% 0.934

Xie et al. (2018) LIDC
1972 nodules
648 - malignant
1324 - benign

89.53% 92.02% 84.19% 0.966

Jiang et al. (2018) LIDC 1006 scans - -
80.6 with 4.7 FP’s
94 with 15.1 FP’s

-

Xie et al. (2019) LUNA 16
150414 images
150075 - non-nodules
339 - nodules

- - 86.42 -

Huang et al. (2019) LUNA 16
888 CT scans
223 nodules

91.4 with 1 FP’s
94.6 with 4 FP’s

- - -

Lakshmanaprabu et al. (2019) LIDC

70 images
Normal - 27
Benign - 21
Malignant - 22

94.56% 94.2% 96.2% -

Proposed methodology LIDC

1279 images
278 - benign
437 - malignant
569 - non-cancerous

97.8% 97.2% 97.1% 0.995

and testing ratio samples were varied to see if the algorithm results in a consistent behavior as represented

in Table 10.

Table 10: Performance evaluation with varying training and testing sets

Training set Testing set No. of Nodules
Accuracy

Results

1279 images
from LIDC
dataset were

used for training

65% 831 97.8%

70% 895 97.43%

75% 959 97.0%

80% 1023 97.3%

85% 1087 97.52%

90% 1151 96.96%

95% 1215 96.7%

5. Results and Discussions

The proposed methodology evaluated the automated end-to-end learned features from the LIDC dataset

for lung cancer diagnosis classifying each nodule according to the malignancy stages. The candidate nodules

are extracted from the NROI and are fed to DCNN for training. False positives were observed during

classification due to the misinterpretation of human airways, blood vessels, pulmonary trees as nodules. In

order to reduce false positives, 10-fold cross-validation and nodule grouping were applied to image datasets
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Figure 9: Learning curve of the proposed methodology using ’Adam’ optimizer

forming two parts: training and testing folds for evaluation. In the training phase, ’Adam’ optimizer was

used to learn the weights as shown in Figure 9 with a learning rate of 0.1 for classifying the nodules with a

higher degree of variation. A consistent improvement in the performance of the DCNN was observed using

nodule grouped dataset and the nodules were classified not just by considering the ”size” as a characteristic

feature but also considers large variations in image patterns to distinguish malignant from benign. The

overall accuracy of 97.8%, the specificity of 97.2%, the sensitivity of 97.1%, and AUC score of 0.9956 was

recorded by DCNN method. The corresponding confusion matrix and receiver operating characteristic curve

(ROC) curve are depicted in Figure 10 and Figure 11 respectively.

As the deep learning algorithm performs an end-end learning procedure, the only input passed is the re-

sampled ROI images. However, Pre-processing the image datasets plays a vital role in our study enhancing

the nodules for early detection of lung cancers. The pre-requisites for the deep structured scheme includes

input data of the same size and a feasible procedure for pre-processing all the images in the datasets.

The candidate nodules segmented differs in sizes having information concerning to nodule’s shape and its

surroundings. Using the deep learning scheme, the information around the nodules structure along with its

shapes and sizes were extracted efficiently at the same time. Thus the algorithm detects different irregular

structures nodules which include solitary nodules, pleural and juxta-pleural nodules and vascular nodules

with high accuracy and are applicable to huge datasets. The entire neural network was trained on a CUDA

enabled graphics card: Nvidia GeForce GTX 960, with Matlab 2018b version on a desktop machine with the

memory of 8GB, 12(4C and 8G) core AMD A10 processor with a training time of 28 seconds and overall

time complexity of 1.33 min on GPU mode for the classification results.

6. Conclusion

The proposed methodology implemented a DCNN for automatically learning the features extracted for

lung nodule classification with reduced false positives. The study exhibited the classification accuracy of
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Figure 10: Confusion matrix of the proposed methodology

Figure 11: ROC curve of the proposed methodology

97.8%, the specificity of 97.2%, the sensitivity of 97.1%, and the AUC score of 0.9956. The results showed

the DCNN with self-learned features achieves promising results with traditional hand-crafted methods and

state of art methods. With a limited depth of layers, DCNN demonstrated potential feature learning and is

robust to variable sizes of training and testing datasets.
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The following observations were made as to future works

1. Although the results of the preliminary study are encouraging, we tested the images only to a limited

number of deep learning layers. Increasing the number of layers in the CNN methodology can improve

the performance of the diagnosis as the methodology is analogous to the human brain structure.

2. The optimal size of the input patch for deep learning algorithms are to be further investigated.

3. Also features from 3D input data are to be extracted to train the DCNN even though it could incur

more network complexity.

4. Advancement in extracting context-based features (currently unable to extract) from input patches

can increase the efficiency of the traditional hand-crafted methods.
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