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Abstract: The present investigation deals with the steady

three-dimensional flow and heat transfer of nanofluids

due to stretching sheet in the presence of magnetic field

and heat source. Three types of water based nanoparti-

cles namely, copper (Cu), aluminium oxide (Al2O3), and

titanium dioxide (TiO2) are considered in this study. The

temperature dependent variable thermal conductivity and

thermal radiation has been introduced in the energy equa-

tion. Using suitable similarity transformations the dimen-

sional non-linear expressions are converted into dimen-

sionless systemandare then solvednumerically byRunge-

Kutta-Fehlberg scheme along with well-known shooting

technique. The impact of various flow parameters on axial

and transverse velocities, temperature, surface frictional

coefficients and rate of heat transfer coefficients are vi-

sualized both in qualitative and quantitative manners in

the vicinity of stretching sheet. The results reviled that the

temperature and velocity of the fluid rise with increasing

values of variable thermal conductivity parameter. Also,

the temperature and normal velocity of the fluid in case

of Cu-water nanoparticles is more than that of Al2O3- wa-

ter nanofluid. On the other hand, the axial velocity of the

fluid in case of Al2O3- water nanofluid is more than that of

TiO2nanoparticles. In addition, the current outcomes are

matchedwith the previously published consequences and

initiate to be a good contract as a limiting sense.
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1 Introduction

Recently, the study of nanofluid flows generated due to

a stretching sheet has been attracted by the many re-

searchers because of their fascinating engineering and

industrial applications such as microelectronics, engine

cooling, refrigerator and fuel cells. The fundamental point

of using nanofluids in such frameworks are to upgrade

the thermal conductivity and enhancing the heat trans-

fer capacity in order to accomplish better cooling. The re-

views [1–4] reviled that the heat exchange performance

of the nanoparticles (like Cu, Al2O3, TiO2 ) are more in

comparison with the base fluids (such as water, glycol,

toluene and oil etc.). Rehman et al. [5] examined the ef-

fect of thermal radiation on a stretching sheet in the pres-

ence of nanofluid. They originate that the Cunanoparticles

enhancing heat transfer rate with minimal entropy gener-

ation. Recently, many researchers [6–10] have paid their

interest on nanofluid flows with different boundary con-

ditions on different models. Melting effect on heat trans-

fer flow of nanofluid with Buongiorno model was studied

by Sheikholeslami et al. [11]. Umavathi et al. [12] consid-

ered the convective heat transfer flow of nanofluid by us-

ing Darcy-Forchheimer-Brinkman model. They concluded

that the flow and heat transfer characteristics enhance

with increase of Darcy or Grashof or Brinkman numbers

while it reduce with the inertial or viscosity ratio param-

eters. Iqbal et al. [13] presented the effects of heat con-

vection on nanofluid flow over a moving Riga plate. They

solved the governing equations numerically by using fi-

nite difference scheme Keller Boxmethod. Ahmad Khan et

al. [14] employed two different models for 3D rotating flow

of effective thermal conductivity of nanofluids. Falkner-

Skan flow of MHD Carreau nanofluid was investigated by

Masood Khan et al. [15]. They applied two numerical tech-

niques namely shooting and Newton’s Raphson methods

in their study. Hayat et al. [16] developed the 3D rotating

flow of Maxwell fluid through submersion nanoparticle.

Impact of MHD on heat transfer flow of a nanofluid gen-

erated by a stretching sheet was studied by [17–19].
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The influence of temperature dependent thermal con-

ductivity in the presence of nanofluids is most impor-

tant because it change with temperature. The Cattaneo-

Christov heat flux theory with Jeffery liquid was reported

by Meraj et al. [20]. They initiate the thermal boundary

layer thickness is high for heat conduction of Fourier’s law

with comparisonof Cattaneo-Christovheat fluxmodel. But

the concentration plays an opposite behaviour with reac-

tion parameters. Hayat et al. [21] examined the Cattaneo-

Christov heat flux on Jeffrey fluid flow with variable ther-

mal conductivity. Ramzan et al. [22] analyzed the effects

of temperature dependent thermal conductivity on non-

Newtonian nanofluid flow past a moving surface. They

found that the temperature increases with the rise of ther-

mal radiation. Srinivas Reddy et al. [23] examined the

heat transfer characteristics of Williamson nanofluid over

a stretching sheet. They solved the equations by spec-

tral quasi-linearization method by considering the vari-

able thermal conductivity. Dyugaev et al. [24] studied the

influence of thermal conductivity and viscosity of fluid

with ultra - fine particles. Some of the scientist’s worked

on the influence of thermal radiation on free convection

flow through different models [25–29].

Animasaun [30] explored the influence of chemical

reaction and thermophoresis on the nanofluid boundary

layer flow over an upper horizontal surface of paraboloid

of revolution. They solved the buoyancy model by using

R-K-4-S-T (Runge-Kutta fourth order along with shooting

technique) with volume fraction (ϕ) defined as0% ≤ ϕ ≤

.8%. Three kinds of water-based nanofluids (Al2O3, Cu,

and TiO2 nanoparticles) with volume fraction 10% and

20% in a cubical enclosure has been analysed by Boutra

et al. [31]. They implemented a boundary element method

to simulate the flow and estimate the thermal conductiv-

ity and viscosity of nanofluids. The natural convection of

Al2O3/water nanofluids with volume fractions up to 3%

in a cubic cavity was proposed by Saghir et al. [32]. Pu-

rusothaman et al. [33] presented the natural convection

of nanofluids in a cavity model by finite volume method.

Later, Snoussi et al. [34], Sheikholeslami and Ellahi [35]

and Kolsi et al. [36–38] established convection flow of

Al2O3/water nanofluids in a cube cavity with a maximum

volume fraction up to 20%.Meng and Li [39] simulated the

free convection of Al2O3/water nanofluids with two vol-

ume concentrations of 1 and 4% in a horizontal cylinder.

Ho et al. [40] developed the correlations for thermal con-

ductivity and viscosity.

The literature reviles that the thermal conductivity of

nanofluids are not constant and it varies linearly with the

temperature and they play an important role inmany engi-

neering and industrial applications. Hence, the main ob-

jective of current analysis is fill the gap in the literature

by studying the influence of variable thermal conductiv-

ity on three dimensional flow of MHD nanofluid (with dif-

ferent nanoparticles) caused by a stretching sheet with

thermal radiation. Similarity transformations are applied

to nonlinear partial differential equations and the trans-

formed system can be solved numerically by Runge-Kutta-

Fehlberg schemewith shooting technique. Expressions for

various values of parameters on the velocity and temper-

ature as well as the Nusselt number are discussed graphi-

cally.

2 Mathematical formulation

The steady three-dimensional flow of an electrical con-

ducting magnetohydrodynamic nanoliquid through a

stretching surface is considered in thismodel. The variable

thermal conductivity and heat transfer of nanofluids have

been studied in viewof free convection. Choose a cartesian

coordinates system (x, y, z) in which x− and y−axes are

taken along the sheet surface in the direction of the fluid

flow and z−axis is perpendicular to it. The stretching sheet

is coincident at z = 0 and flow dwell in the region z > 0 as

shown in Figure 1. u*w(x) = a*x and v*w(y) = b*y are stretch-

ing velocities along the fluid flow direction. Furthermore,

w* = −W* is mass flux velocity, considered on the sheet.

Where w* > 0 is the suction and w* < 0 is the injection.

A uniform magnetic field of strength B0 is assumed in the

direction of z and normal to the surface (i.e. xy-plane). The

induced Lorentz force and impressed electric field are ne-

glected due to the small magnetic Reynolds number.

Figure 1: Physical model of the problem
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The dynamical equations of the three dimensional

nanofluid flow along with heat transfer can be expressed

(see Ref. [41, 42]) as

∂u*

∂x
+
∂v*

∂y
+
∂w*

∂z
= 0 (1)

u*
∂u*

∂x
+ v*

∂u*

∂y
+ w* ∂u

*

∂z
=
µ*nf
ρ*nf

∂2u*

∂z2

+
g*
(

ρ*β
)

nf

ρ*nf
(T* − T*∞) −

σ*H2
0

ρ*nf
u* (2)

u*
∂v*

∂x
+ v*

∂v*

∂y
+ w* ∂v

*

∂z
=
µ*nf
ρ*nf

∂2v*

∂z2
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g*
(

ρ*β
)

nf

ρ*nf
(T* − T*∞) −

σ*H2
0

ρ*nf
v* (3)

u*
∂T*

∂x
+ v*

∂T*

∂y
+ w* ∂T

*

∂z
=

K*
nf

(

ρ*cp
)

nf

∂

∂z

(

ς*(T*)
∂T*

∂z

)

+
1

(

ρ*cp
)

nf

∂q*r
∂z

−
Q*
0(T

* − T*∞)
(

ρ*cp
)

nf

(4)

The boundary conditions are defined as

u* = u*w(x) = a*x v* = v*w(y) = b*y

w* = −W*, T* = T*w at z = 0

u*(z) → 0 v*(z) → 0, T*(z) → T*∞ as z → ∞











(5)

The temperature dependent thermal conductivity

ς*(T) is defined (Ref. [41]) as

ς*(T) = ω∞

{

1 +
ε*

∆T*
(T* − T*∞)

}

(6)

Where ∆T* = T*w − T*∞ and T*w is the sheet temperature,

ω∞ is the conductivity of the fluid far away from the sheet.

By Rosseland approximation, the radiative heat flux

q*r (see Ref. [43, 44]) is given by

q*r = −
4σ*

3k*
∂
(

T*
)4

∂z
, q*r = −

16σ*
(

T*
)3

∞

3k*
∂T*

∂z
,

⇒ ∂q*r
∂z

= −
16σ*

(

T*
)3

∞

3k*
∂2T*

∂z2
(7)

Substituting equation (7) in the energy equation (4)

and it becomes

u*
∂T*
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+ v*
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∂y
+ w* ∂T

*
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=
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Where

ρ*nf = (1 − ϕ)ρ* f + ϕρ
*
s

(
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(9)

The effective dynamic viscosity of the nanofluid is de-

scribed as [see Ref. [5, 6, 41])

µ*nf = µ* f (1 + 39.11ϕ + 533.9ϕ2) (10)

The similarity variables are

u* = a*xf ′(η) v* = a*yg′(η) θ(η) = T*−T*∞
T*w−T*∞

w* = −
√

a*υ* f
(

f (η) + g(η)
)

η =
√

a*

υ* f
z







(11)

With the help of the above relations, the governing

equations finally reduce to

f ′′′ + ε4

{

ε1

{

(f + g)f ′′ − (f ′)
2
}

+ ε2γθ −Mf ′
}

= 0 (12)

g′′′ + ε4

{

ε1

{

(f + g)g′′ − (g′)
2
}

+ ε2γθ −Mg′
}

= 0 (13)

{

ARd(1 + ε
*θ) −

4

3

}

θ′′ + ε3PrRd(f + g)θ
′

+ ε*ARd(θ
′)2 − HPrRdθ = 0 (14)

The corresponding boundary conditions can be writ-

ten as

f ′(η) = 1 g′(η) = λ f (η) + g(η) = S θ(η) = 1

at η = 0

f ′(η) → 0 g′(η) → 0 θ(η) → 0 as η → ∞











(15)

Where λ is the stretching ratio parameter, S is a constant

mass wall transfer with S > 0 for suction, S < 0 for injunc-

tion and impermeable plate S = 0 and

A =
k*nf

k*
f

Rd =
k*k*∞k* f

4σ*T*
3
∞

M =
σ*B20
a*ρ* f

H =
Q*
0

a*(ρ*cp)f

λ =
b*

a*
Pr =

υ* f (ρ
*cp)f

k*∞k* f
S =

W*

√

a*υ*
f

γ =
g*β* f (T

* − T*∞)

ρf a*u*

ε1 = 1−ϕ + (ρ*s/ρ
*
f )ϕ, ε3 = 1−ϕ + {(ρ*cp)s/(ρ*cp)f }ϕ

ε2 = 1−ϕ+{(ρ*β*)s/(ρ*β*)f }ϕ, ε4 =
1

1 + 39.11ϕ + 533.9ϕ2
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The surface frictional coefficients Cfx, Cfy and rate of heat transfer Nux are respectively, defined as follows

Cfx =
τwx

ρ* f
(

U*
w

)2
, Cfy =

τwy

ρ* f
(

V*
w

)2
, Nux =

xqw
k* f (T*w − T*∞)

(16)

Where τwx = µ*nf

{

∂u*
∂z

}

z=0
and τwy = µ*nf

{

∂v*
∂z

}

z=0
are the wall shear stresses along x and y−axis of the stretching

surface and qw = −k*nf (1 + Rd)
{

∂T*

∂z

}

z=0
is the wall flux from the stretching surface.

The non-dimensional form of surface friction coefficients and heat transfer coefficients are defined as

√
Rex Cfx = (1 + 39.11ϕ + 533.9ϕ2)f ′′(0),

√

Rey Cfy =
1

λ3/2
(1 + 39.11ϕ + 533.9ϕ2)g′′(0)

√

ReyNux = −A(1 + R)θ′(0)











(17)

Where Rex =
U*

wx
υ* f

and Rey =
V*

wy
υ* f

are local Reynolds number.

It is observed that for λ = 0, present problem reduces to the case of two dimensional linear stretching work, while

λ = 1, sheet is axisymmetric case where sheet is stretched in x and y directions with the same values and if λ is neither

zero or one then the flow behaviour along both the directions will be different.

3 Numerical analysis

The numerical results established to the coupled non-linear ODE’s (12)-(14) along with the corresponding conditions

Eq. (15) are solved using shooting procedure with the support of 4th order Runge-Kutta-Fehlberg scheme with [0, 15] as

the domain of the problem instead of [0, ∞]. The resulting ODE’s and boundary conditions are reduced to the first order

system by choosing f by ζ1, g by ζ4, θ by ζ7. Thus we obtain

ζ 11 = ζ2 ζ1(0) = 0

ζ 12 = ζ3 ζ2(0) = 1

ζ 13 = −ε *
{

ε1 *
(

(ζ1 + ζ5) * ζ
′′

3 − (ζ2)
2
)
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}
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ζ 14 = ζ5 ζ1(0) + ζ4(0) = S
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{
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(
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′′

6 − (ζ5)
2
)

+ γ * ε2 * θ −M * ζ5

}

ζ6(0) = α2

ζ 17 = ζ8 ζ7(0) = 1

ζ 18 =

(

−1
/

(

Rd * A * (1 + ε * θ) −
(

4/3

))

)







(f + g) * ε3 * Rd * Pr *θ
′

+A * ε * Rd *
(

θ
′
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− H * Pr *Rd * θ







ζ8(0) = α3











































































(18)

Where α1, α2 and α3 are shooting specifications and ζ2(∞) = 0, ζ5(∞) = 0, ζ7 (∞) = 0
}

4 Results and discussion

The transformed equations (12), (13) and (14) with boundary conditions (15) have been solved numerically by Runge-

Kutta-Fehlberg method along with shooting technique. The influence of different flow parameters on the axial and nor-

mal velocities, temperature, surface frictional coefficients and rate of heat transfer are discussed graphically in Figures

2-11. The thermophysical properties of different nanofluids are defined in Table 1. The validity of the current work out-

comes are compared with those of Magyari and Keller [45] and Liu et al. [46] in Table 2 and Table 3 respectively. It is

observed that the current results are in good agreement with those existing results.
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Table 1: Thermo-physical Properties of the base fluids and nanopar-

ticles.

Physical 

Properties 

Base fluid 

Water 

Nanoparticles 

 Copper       Silver   Aluminium oxide   Titanium dioxide 

ρ (kg/m3) 997               385           10,500                  765                         686.2 

pC (J/kg-K) 4179              8933             235                   3970                       4250 

k (W/m-K) 0.613               400              429                     40                             8.9538 

 

Table 2: Comparison of-θ′(0) with distinct value of Pr for λ = 0

Pr  Magyari and Keller [45] Present 

1 -0.5496               -0.549643 

5 -1.5212 -1.521243 

10 -2.2900 -2.29000 

 

Table 3: Temperature gradient-θ′(0) for distinct values of λ when

Pr = 0.7

λ  Liu et al. [46] Present 

0 -0.4258 -0.4258380 

1 -0.6020 -0.602000 

 

Figures 2(a)-2(c) display the influence ofM on both ax-

ial and transverse velocities (f ′(η), g′(η)) and temperature

(θ(η)) profiles respectively for two distinct nanoparticles,

namely Cu and TiO2. It is noticed that the velocity profiles

declines in both the directions and temperature increases

by increasing values of M. This is because, M is inversely

proportional to the density byM =
σB2

0
aρf

and hence the tem-

perature of the fluid rises with rising values ofM. Also no-

ticed that the heat transfer rate of Cu is more than that of

TiO2 nanoparticles. Therefore, the two distinct nanoparti-

cles boundary layer is vary with magnetic field parameter

M.

The variations of the velocity and temperature profiles

for buoyancy parameter γ are presented in Figures 3(a)-

3(c), respectively with (i.e.Cu, Al2O3 and TiO2) three dif-

ferent nanoparticles. It is obvious that both the velocity

profilesf ′(η) and g′(η) are growing and θ(η) demolishwith

rising values of γ. This is due to the high heat source on

temperature profile.

Figures 4(a)-4(c) illustrate the influence of stretching

ration parameter λ on both velocity components and tem-

perature distributions. The velocity increases along the

normal direction and temperature, velocity along axial di-
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Figure 2: (a) Significance of M on f ′(η) (b) Significance of M on g′(η)

(c) Significance of M on θ(η)
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Figure 3: (a) Significance of γ on f ′(η) (b) Significance of γ on g′(η)

(c) Significance of γ on θ(η)
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rectiondecreasewith increasing values of λ. Therefore, the

Coriolis force in the fluid motion is due to stretching ra-

tio parameter λwhich is responsible for the acceleration of

the fluidmotion andhence themomentumboundary layer

thickness. Increasing values of stretching ratio parameter

λ causes the less heat transfer of the fluid from sheetwhich

leads to decline in the temperature and thermal boundary

layer thickness.

The variations of Pr (Prandtl number) on the veloc-

ity and temperature distributions are exhibited in Figure

5 for different Cu, TiO2 nanoparticles. It is noticed that the

profile θ(η) diminishing for ascending values of Pr. Phys-

ically, less Pr values indicate the high thermal diffusivity

which causes a reduction in the fluid temperature. Hence,

the thermal boundary layer thickness of Pr is proportional

to the thermal diffusivity.

The nanofluid volume fraction ϕ characterization on

both velocities and temperature profiles are elucidated re-

spectively in Figures 6(a)-6(c). It is noticed that both the

velocity profiles along axial and transverse directions in-

crease with distinct ascending values of ϕ and intensi-

fies the resistance force within the fluid and the tempera-

ture profiles has opposite behaviour. This is due to the fact

that the thermal conductivity and thermal boundary layer

thickness decreases with growing values of ϕ.

Figure 7 displays the behaviour of temperature profile

for different values ofH for Al2O3 and TiO2 nanoparticles.

The temperature of nanofluid reduceswith growing values

of H. Therefore, the heat source parameter produces the

more energy to the flow and decreases the thickness of the

thermal boundary layer.

Figures 8(a)-8(c) illustrate the velocity (f ′(η), g′(η))

and temperature (θ(η)) profiles for various values of εwith

the nanoparticles Cu, Al2O3 and Al2O3, TiO2 respectively.

It is noticed that both the velocity profiles increases for
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Figure 6: (a) Significance of ϕ on f ′(η) (b) Significance of ϕ on g′(η)

(c) Significance of ϕ on θ(η)
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Figure 7: Significance of H on θ(η)

ascending values of ε along axial and normal directions.

Also, the temperature of the fluid and thermal boundary

layer thickness increases with ascending values of ε.

Well-strategy profile θ(η) is illustrated in Figure 9 for

distinct numerical values of Rd. It is observed that θ(η) in-

creases with ascending numerical values Rd. This means

that the fluid absorbs more heat from the radiation, with

this both temperature and its association thermal bound-

ary layer thickness increases.

Figures 10 displayed the effect of ε against λ on

Re−1/2x Nux. It is clear that the heat transfer rate increase

with ascending values of ε for titanium oxide nanoparti-

cles. This is due to the fact that, the surface heat transfer

rate enhance significantly for fixed large values of ϕ.

Figure 11 displays the influence of S on heat trans-

fer rate (Re−1/2x Nux) against λ. It is observed that the

Re−1/2x Nux increases for increasing values of S. Physically,

the principal of suction is associate of the heated fluid par-

ticles through stretching sheet where the buoyancy forces

will slow down due to the high viscosity effect of the fluid

particles.

The effect of Prandtl number on skin friction coeffi-

cient against volume fraction parameter along y and x axis

is displayed respectively in Figures 12 (a) and (b). The lo-

cal skin friction value increases with increasing values of

Pr and ϕin the presence of Copper nanoparticles.

5 Concluding remarks

The major outputs of the current research work are listed

below
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Figure 8: (a) Significance of ϵ on f ′(η) (b) Significance of ϵ on g′(η)

(c) Significance of ϵ on θ(η)
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Figure 13: Significance of Pr on Re1/2x Cfx

• The temperature and velocity of the fluid along axial

direction are more in case of Cu-water nanofluid than

to that of Al2O3-water nanofluid.

• The heat transfer rate reduces with rising the volume

fraction of nanoparticles.

• The properties of nanofluids are controlled by chang-

ing ϕ along x and y-directions.

• Stretching ratio parameter shows opposite effect on

axial and transverse velocities.

• The fluid temperature rises and velocity decreases

with growing values of γ andM.

• Heat source parameter boost the temperature in the

boundary.

• The rate of heat transfer increases for the case of in-

jection due to high volume fraction value of nanopar-

ticles in nanofluid.
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Nomenclature 
* *( , )u v  Velocity components along x , y -axis     ( , )x y  Cartesian coordinate’s 

 *
a    Positive constant           Greek symbols 

A   Ratio of thermal conductivity of nanofluid 

and fluid thermal conductivity 

*

m
α     Thermal diffusion

2 1( .s )m
−

 

*
b    Positive constant          γ    Thermal expansion parameter 

0B    Magnetic field strength 
2 1(kg.S .A )− −

   *ε    Variable thermal conductivity parameter 

fC    Skin friction coefficient   λ     Stretching ratio parameter  

pc    Specific heat constant  ( )/kJ kg K *σ     Electrical conductivity
2 1( s )m

−
 

f     Dimensionless stream function *

nf
µ    Dynamic viscosity of nanofluid 2(Ns.m )−  

'
f     Dimensionless velocity *σ     Boltzmann constant 2 4(wm K )− −  

*
k    Mean absorption coefficient 

*

nf
ρ     Nanofluid density

3(Kg.m )−
  

H    Heat Source Parameter θ     Dimensionless temperature 

 
*

k∞   Thermal conductivity at infinity 
2 1( s )m

−
 S     Wall mass transfer parameter 

*

f
k   Thermal conductivity of the fluid 1 1(w m K )− −  φ     Volume fraction 

*

nf
k  Thermal conductivity of the nanofluid *

nfρ   Density of nanofluid 3(kg.m )− 1(Ns.m )−

M    Magnetic parameter *

f
µ     Dynamic viscosity of fluid 

xNu   Nusselt number  *

fρ  Fluid density 

d
R     Radiation parameter *

fβ  Thermal expansion of the fluid 

*

w
T    Temperature of the fluid ( )K

*( )p nfcρ  Heat capacity of the nanofluid

1( ) kJ kg
−  

*
T    Temperature of the fluid ( )K

*( )p fcρ  Heat capacity of the fluid 

*
T ∞   Uniform ambient temperature ( )K  *( )

p s
cρ  Heat capacity of the nanoparticles 

Pr    Prandtl number η       Similarity variable 
*

r
q    Radiative heat flux

2(W m )−
 w

τ      Wall shear stress 1 2(kg.m s )− −  

Rex   Reynolds number *( / )l vυ  ( )* *

nf
ρ β  Thermal expansion of the nanofluid 

dR    Thermal Radiation parameter Subscripts 
*

w
u    Stretching velocity at wall w      Wall mass transfer velocity     1(ms )−

*
u∞    Free stream velocity ∞      Condition at free stream    
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