Subclasses of analytic functions associated with the generalized hypergeometric function

M.K. Aouf, H.E. Darwish*
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

ARTICLE INFO

Article history:

Received 29 July 2007
Received in revised form 31 October 2007
Accepted 17 November 2007

Keywords:

Analytic
Distortion theorem
Hypergeometric function
Modified Hadamard product

Abstract

Using the generalized hypergeometric function, we study a class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ of analytic functions with negative coefficients. Coefficient estimates, distortion theorem, extreme points and the radii of close-to-convexity and convexity for this class are given. We also derive many results for the modified Hadamard product of functions belonging to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$.

© 2009 Published by Elsevier Ltd

1. Introduction

Let $A(p, k)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=k}^{\infty} a_{n} z^{n} \quad(p<k ; p, k \in N=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in $U=U(1)$, where $U(r)=\{z: z \in C$ and $|z|<r\}$. Also let us put $A(p)=A(p, p+1)$ and $A=A(1)$. Let the functions $f(z)$ and $g(z)$ be analytic in U. Then the function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $w(z)$ analytic in U, with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that $f(z)=g(w(z))(z \in U)$. We denote this subordination by $f(z) \prec g(z)$.

A function $f(z)$ belonging to the class $A(p)$ is said to be p-valent starlike of order α in $U(r)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U(r) ; 0<r \leq 1 ; 0 \leq \alpha<p) \tag{1.2}
\end{equation*}
$$

and a function $f(z)$ belonging to the class $A(p)$ is said to be p-valent convex of order α in $U(r)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in U(r) ; 0<r \leq 1 ; 0 \leq \alpha<p) \tag{1.3}
\end{equation*}
$$

Also a function belonging to the class $A(p)$ is said to be p-valent close-to-convex of order α in $U(r)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \quad(z \in U(r) ; 0<r \leq 1 ; 0 \leq \alpha<p) \tag{1.4}
\end{equation*}
$$

[^0]We denote by $S_{p}^{*}(\alpha)$ the class of all functions in $A(p)$ which are p-valent starlike of order α in U, by $S_{p}^{c}(\alpha)$ the class of all functions in $A(p)$ which are p-valent convex of order α in U and by $S_{p}^{k}(\alpha)$ the class of all functions in $A(p)$ which are p-valent close-to-convex functions of order α in U. We also set

$$
\begin{aligned}
& S_{p}^{*}=S_{p}^{*}(0), \quad S^{*}(\alpha)=S_{1}^{*}(\alpha), \quad S_{p}^{c}=S_{p}^{c}(0), \quad C(\alpha)=S_{1}^{c}(\alpha), \\
& S_{p}^{k}=S_{p}^{k}(0) \quad \text { and } \quad K(\alpha)=S_{1}^{k}(\alpha) .
\end{aligned}
$$

Let G be a subclass of the class A. We define the radius of starlikeness $R^{*}(G)$, the radius of convexity $R^{c}(G)$ and the radius of close-to-convexity $R^{k}(G)$ for the class G by

$$
\begin{aligned}
& R^{*}(G)=\inf _{f \in G}(\sup \{r \in(0,1]: f \text { is starlike in } U(r)\}), \\
& R^{c}(G)=\inf _{f \in G}(\sup \{r \in(0,1]: f \text { is convex in } U(r)\})
\end{aligned}
$$

and

$$
R^{k}(G)=\inf _{f \in G}(\sup \{r \in(0,1]: f \text { is close-to-convex in } U(r)\})
$$

For analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, by $(f * g)(z)$ we denote the Hadamard product (or convolution) of $f(z)$ and $g(z)$, defined by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

For complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \neq 0,-1,-2, \ldots ; j=1, \ldots, s\right)$, we define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by

$$
\begin{equation*}
{ }_{q} F_{s}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n}} \cdot \frac{z^{n}}{n!} \quad\left(q \leq s+1 ; q, s \in N_{0}=N \cup\{0\} ; z \in U\right) \tag{1.5}
\end{equation*}
$$

where $(\theta)_{n}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\theta)_{n}=\frac{\Gamma(\theta+n)}{\Gamma(\theta)}= \begin{cases}1 & (n=0) \tag{1.6}\\ \theta(\theta+1) \ldots(\theta+n-1) & (n \in N)\end{cases}
$$

Corresponding to a function $h_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ defined by

$$
h_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z^{p}{ }_{q} F_{s}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right),
$$

we consider a linear operator $H_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right): A(p) \rightarrow A(p)$, defined by the convolution

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=h_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) * f(z) \tag{1.7}
\end{equation*}
$$

We observe that, for a function $f(z)$ of the form (1.1), we have

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) f(z)=z^{p}+\sum_{n=k}^{\infty} \Gamma_{n} a_{n} z^{n} \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n}=\frac{\left(\alpha_{1}\right)_{n-p} \ldots\left(\alpha_{q}\right)_{n-p}}{\left(\beta_{1}\right)_{n-p} \ldots\left(\beta_{s}\right)_{n-p}(n-p)!} \tag{1.9}
\end{equation*}
$$

If, for convenience, we write

$$
\begin{equation*}
H_{p, q, s}\left(\alpha_{1}\right)=H_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right) \tag{1.10}
\end{equation*}
$$

then one can easily verify from the definition (1.7) that

$$
\begin{equation*}
z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}-p\right) H_{p, q, s}\left(\alpha_{1}\right) f(z) \tag{1.11}
\end{equation*}
$$

The linear operator $H_{p}\left(\alpha_{1}, \ldots \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)$ was introduced and studied by Dziok and Srivastava [1].
We note that, for $f(z) \in A(p, p+1)=A(p)$, we have :
(i) $H_{p, 2,1}(a, 1 ; c)=L_{p}(a, c)(a>0 ; c>0)$ Saitoh [2];
(ii) $H_{p, 2,1}(v+p, 1 ; v+p+1) f(z)=J_{v, p}(f)$, where $J_{v, p}(f)$ is the generalized Bernari-Libera-Livingston operator (see [3-5]) defined by

$$
\begin{equation*}
\left(J_{v, p} f\right)(z)=\frac{v+p}{z^{v}} \int_{0}^{z} t^{\nu-1} f(t) \mathrm{d} t \quad(v>-p ; p \in N) \tag{1.12}
\end{equation*}
$$

(iii) $H_{p, 2,1}(\mu+p, 1 ; 1) f(z)=D^{\mu+p-1} f(z)(\mu>-p)$, where $D^{\mu+p-1} f(z)$ is the $(\mu+p-1)$ th order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see Kumar and Shukla [6,7]);
(iv) $H_{p, 2,1}(1+p, 1 ; 1+p-\mu)=\Omega_{z}^{(\mu, p)} f(z)$, where the operator $\Omega_{z}^{(\mu, p)} f(z)$ is defined by (see Srivastava and Aouf [8])

$$
\begin{equation*}
\Omega_{z}^{(\mu, p)} f(z)=\frac{\Gamma(1+p-\mu)}{\Gamma(1+p)} z^{\mu} D_{z}^{\mu} f(z) \quad(0 \leq \mu \leq 1 ; p \in N) \tag{1.13}
\end{equation*}
$$

where D_{z}^{μ} is the fractional derivative operator (see, for details, $[9,10]$).
Making use of the operator $H_{p, q, s}\left(\alpha_{1}\right)$, we say that a function $f(z) \in A(p, k)$ is in the class $\Psi_{k}^{p}(q, s ; A, B, \lambda)$ if it satisfies the following condition :

$$
\begin{align*}
& \frac{1}{p-\lambda}\left(\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}-\lambda\right) \prec \frac{1+A z}{1+B z} \quad(z \in U) \\
& (0 \leq B \leq 1 ;-B \leq A<B ; 0 \leq \lambda<p ; p, k, q, s \in N) \tag{1.14}
\end{align*}
$$

or, equivalently, if

$$
\begin{equation*}
\left|\frac{\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}-p}{B \frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}-[p B+(A-B)(p-\lambda)]}\right|<1 \tag{1.15}
\end{equation*}
$$

Furthermore, we say that a function $f(z) \in \Psi_{k}^{p}(q, s ; A, B, \lambda)$ is in the subclass $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ of $\Psi_{k}^{p}(q, s ; A, B, \lambda)$ if $f(z)$ is of the following form :

$$
\begin{equation*}
\left\{f \in T(p, k): f(z)=z^{p}-\sum_{n=k}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0 ; n=k, k+1, k+2, \ldots\right)\right\} \tag{1.16}
\end{equation*}
$$

In particular, for $q=s+1$ and $\alpha_{s+1}=1$, we write $\Phi_{k}^{p}(s ; A, B, \lambda)=\Phi_{k}^{p}(s+1, s ; A, B, \lambda)$.
We note that :
(i) The subclass $V_{k}^{p}(q, s ; A, B, \lambda)$ of $T(p, k)$ obtained by replacing $\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}$ with $\frac{z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{p, q, s}\left(\alpha_{1}\right) f(z)}$ in (1.15) was studied by Aouf [11];
(ii) The subclass $V_{k}^{p}(q, s ; A, B)$ of $T(p, k)$ obtained by replacing $\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}$ by $\frac{z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{p, q, s}\left(\alpha_{1}\right) f(z)}$ in (1.15) (with $\left.\lambda=0\right)$ was studied by Dziok and Srivastava [1].

We note that for $k=p+1, q=2$ and $s=1$, we obtain the following interesting relationships with some of the special classes which were investigated recently :
(i) Taking $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$, we obtain :
$\Phi_{p+1}^{p}(2,1 ; A, B, \lambda)=P^{*}(p, A, B, \lambda)($ Aouf [12]);
(ii) Taking $\alpha_{1}=\beta_{1}, \alpha_{2}=1, A=-\beta$ and $B=\beta(0<\beta \leq 1)$, we obtain :
$\Phi_{p+1}^{p}(2,1 ;-\beta, \beta, \lambda)=T_{p}^{*}(\lambda, \beta)$ (Aouf [13]);
(iii) Taking $\alpha_{1}=\beta_{1}, \alpha_{2}=1, A=-1$ and $B=1$, we obtain :
$\Phi_{p+1}^{p}(2,1 ;-1,1, \lambda)=T_{p}^{*}(\lambda)($ Aouf [13] and Lee et al. [14]);

$$
\begin{equation*}
=\left\{f(z) \in T(p): \operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\lambda, 0 \leq \lambda<p, z \in U\right\} \tag{1.17}
\end{equation*}
$$

(iv) Taking $\alpha_{1}=v+p(v>-p), \alpha_{2}=1, \beta_{1}=1, A=-1$ and $B=1$

$$
\begin{align*}
& \Phi_{p+1}^{p}(2,1 ;-1,1, \lambda)=Q_{v+p-1}(\text { Aouf and Darwish [15]) } \\
& \quad=\left\{f(z) \in T(p): \operatorname{Re}\left\{\frac{\left(D^{v+p-1} f(z)\right)^{\prime}}{z^{p-1}}\right\}>\lambda, 0 \leq \lambda<p, v>-p, z \in U\right\} \tag{1.18}
\end{align*}
$$

Also we note that :

$$
\begin{align*}
& \Phi_{k}^{p}(q, s ;-\rho, \rho, \lambda)=\Phi_{k}^{p}(q, s ; \lambda, \rho) \\
& \quad=\left\{f \in T(p, k):\left|\frac{\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}-p}{\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{z^{p-1}}+p-2 \lambda}\right|<\rho,(z \in U ; 0 \leq \lambda<p ; 0<\rho \leq 1 ; p \in N)\right\} . \tag{1.19}
\end{align*}
$$

2. Coefficient estimates

Theorem 1. A function $f(z)$ of the form (1.16) belongs to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ if and only if

$$
\begin{equation*}
\sum_{n=k}^{\infty} n(1+B) \Gamma_{n} a_{n} \leq(B-A)(p-\lambda) \tag{2.1}
\end{equation*}
$$

where Γ_{n} is given by (1.9).
Proof. Let $|z|=r(0 \leq r<1)$. If (2.1) holds, we find from (1.15) and (1.16) that

$$
\begin{aligned}
& \left|\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-p z^{p-1}\right|-\left|B\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-[p B+(A-B)(p-\lambda)] z^{p-1}\right| \\
& \quad=\left|-\sum_{n=k}^{\infty} n \Gamma_{n} a_{n} z^{n-1}\right|-\left|(B-A)(p-\lambda) z^{p-1}-\sum_{n=k}^{\infty} B n \Gamma_{n} a_{n} z^{n-1}\right| \\
& \quad \leq \sum_{n=k}^{\infty} n \Gamma_{n} a_{n} r^{n-1}-\left\{(B-A)(p-\lambda) r^{p-1}-\sum_{n=k}^{\infty} B n \Gamma_{n} a_{n} r^{n-1}\right\} \\
& \quad=r^{p-1}\left(\sum_{n=k}^{\infty} n(1+B) \Gamma_{n} a_{n} r^{n-p}-(B-A)(p-\lambda)\right) \\
& \quad<\sum_{n=k}^{\infty} n(1+B) \Gamma_{n} a_{n}-(B-A)(p-\lambda) \leq 0 .
\end{aligned}
$$

Hence, by the maximum modulus theorem, $f(z) \in \Phi_{k}^{p}(q, s ; A, B, \lambda)$.
Conversely, let $f(z) \in \Phi_{k}^{p}(q, s ; A, B, \lambda)$ be given by (1.16). Then, from (1.15) and (1.16), we have

$$
\begin{equation*}
\left|\frac{\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-p z^{p-1}}{B\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}-[p B+(A-B)(p-\lambda)] z^{p-1}}\right|=\left|\frac{-\sum_{n=k}^{\infty} n \Gamma_{n} a_{n} z^{n-p}}{(B-A)(p-\lambda)-\sum_{n=k}^{\infty} B n \Gamma_{n} a_{n} z^{n-p}}\right|<1 \quad(z \in U), \tag{2.2}
\end{equation*}
$$

where Γ_{n} is defined by (1.9). Putting $z=r(0 \leq r<1)$, we obtain

$$
\sum_{n=k}^{\infty} n \Gamma_{n} a_{n} r^{n-p}<(B-A)(p-\lambda)-\sum_{n=k}^{\infty} B n \Gamma_{n} a_{n} r^{n-p}
$$

which, upon letting $r \rightarrow 1^{-}$, readily yields the assertion (2.1). This completes the proof of Theorem 1.
Since $n \Gamma_{n}$, where Γ_{n} is defined by (1.9) is a decreasing function with respect to $\beta_{j}(j=1, \ldots, s)$ and an increasing function with respect to $\alpha_{\ell}(\ell=1, \ldots, q)$, from Theorem 1, we obtain :

Corollary 1. If $\ell \in\{1, \ldots, q\}, j \in\{1, \ldots, s\}, 0 \leq \alpha_{\ell}^{\prime} \leq \alpha_{\ell}$ and $\beta_{j}^{\prime} \geq \beta_{j}, \beta_{j}>0$, then the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ (for the parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\left.\beta_{1}, \ldots, \beta_{s}\right)$ is included in the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ for the parameters

$$
\alpha_{1}, \ldots, \alpha_{\ell-1}, \alpha_{\ell}^{\prime}, \alpha_{\ell+1}, \ldots, \alpha_{q} \quad \text { and } \quad \beta_{1}, \ldots, \beta_{j-1}, \beta_{j}^{\prime}, \beta_{j+1}, \ldots, \beta_{s}
$$

From Theorem 1, we also have the following corollary:
Corollary 2. If a function $f(z)$ of the form (1.16) belongs to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$, then

$$
\begin{equation*}
a_{n} \leq \frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} \quad(n=k, k+1, k+2, \ldots) \tag{2.3}
\end{equation*}
$$

where Γ_{n} is defined by (1.9). The result is sharp, the functions $f_{n}(z)$ of the form :

$$
\begin{equation*}
f_{n}(z)=z^{p}-\frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} z^{n} \quad(n \geq k) \tag{2.4}
\end{equation*}
$$

being the extremal function.
Let $f(z)$ be defined by (1.16) with $k=p+1, p \in N$ and for $A=-1$ and $B=1$, the condition (1.16) is equivalent to :

$$
\begin{equation*}
H_{p}\left(\alpha_{1}\right) f(z) \in T_{p}^{*}(\lambda) \quad(0 \leq \lambda<p) \tag{2.5}
\end{equation*}
$$

Thus we have the following lemma:
Lemma 1. If $\alpha_{j}=\beta_{j}(j=1,2, \ldots, s)$, then

$$
\Phi_{k}^{p}(s ;-1,1, \lambda) \subset T_{p}^{*}(\lambda) \quad(0 \leq \lambda<p)
$$

By the definition of the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$, we have the following lemma.
Lemma 2. If $A_{1} \leq A_{2}, B_{1} \geq B_{2}$ and $0 \leq \lambda_{1}<\lambda_{2}<p$, then

$$
\Phi_{k}^{p}\left(q, s ; A_{1}, B_{1}, \lambda_{2}\right) \subset \Phi_{k}^{p}\left(q, s ; A_{2}, B_{2}, \lambda_{1}\right) \subset \Phi_{k}^{p}(q, s ;-1,1,0)
$$

3. Distortion theorem and extreme points

Theorem 2. Let a function $f(z)$ of the form (1.16) belong to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$. If the sequence $\left\{n \Gamma_{n}\right\}$ is nondecreasing, then

$$
\begin{equation*}
r^{p}-\frac{(B-A)(p-\lambda)}{k(1+B) \Gamma_{k}} r^{k} \leq|f(z)| \leq r^{p}+\frac{(B-A)(p-\lambda)}{k(1+B) \Gamma_{k}} r^{k} \quad(|z|=r<1) \tag{3.1}
\end{equation*}
$$

If the sequence $\left\{\Gamma_{n}\right\}$ is nondecreasing, then

$$
\begin{equation*}
p r^{p-1}-\frac{(B-A)(p-\lambda)}{(1+B) \Gamma_{k}} r^{k-1} \leq\left|f^{\prime}(z)\right| \leq p r^{p-1}+\frac{(B-A)(p-\lambda)}{(1+B) \Gamma_{k}} r^{k-1} \quad(|z|=r<1) \tag{3.2}
\end{equation*}
$$

where Γ_{n} is defined by (1.9). The result is sharp, with the extremal function $f(z)$ given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(B-A)(p-\lambda)}{k(1+B) \Gamma_{k}} z^{k} \quad(k, p \in N) \tag{3.3}
\end{equation*}
$$

Proof. Let a function $f(z)$ of the form (1.16) belongs to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$. If the sequence $\left\{n \Gamma_{n}\right\}$ is nondecreasing and positive, by Theorem 1, we have

$$
\begin{equation*}
\sum_{n=k}^{\infty} a_{n} \leq \frac{(B-A)(p-\lambda)}{k(1+B) \Gamma_{k}} \tag{3.4}
\end{equation*}
$$

and if the sequence $\left\{\Gamma_{n}\right\}$ is nondecreasing and positive, by Theorem 1 , we have

$$
\begin{equation*}
\sum_{n=k}^{\infty} n a_{n} \leq \frac{(B-A)(p-\lambda)}{(1+B) \Gamma_{k}} \tag{3.5}
\end{equation*}
$$

Making use of the conditions (3.4) and (3.5), in conjunction with the definition (1.16), we readily obtain the assertions (3.1) and (3.2) of Theorem 2.

Corollary 3. Let a function $f(z)$ of the form (1.16) belong to the class $\Phi_{k}^{p}(s ; A, B, \lambda)$. If $\alpha_{1} \geq \beta_{1}+1$, and $\alpha_{j} \geq \beta_{j}(j=2, \ldots, s)$, then the assertion (3.1) holds true. Moreover, if $\alpha_{1} \geq \beta_{1}$, then the assertion (3.2) holds true.

Proof. If $q=s, \alpha_{1} \geq \beta_{1}+1$, and $\alpha_{j} \geq \beta_{j}(j=2, \ldots, s)$, then the sequence $\left\{n \Gamma_{n}\right\}$ is nondecreasing. Moreover, if $\alpha_{1} \geq \beta_{1}$, then the sequence $\left\{\Gamma_{n}\right\}$ is nondecreasing. Thus, by Theorem 2, we have Corollary 3.

Theorem 3. Let Γ_{n} be defined by (1.9) and let us put

$$
\begin{equation*}
f_{k-1}(z)=z^{p} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(z)=z^{p}-\frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} z^{n} \quad(n=k, k+1, k+2, \ldots) \tag{3.7}
\end{equation*}
$$

A function $f(z)$ belongs to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ if and only if it is of the form :

$$
\begin{equation*}
f(z)=\sum_{n=k-1}^{\infty} \mu_{n} f_{n}(z) \quad(z \in U) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{n=k-1}^{\infty} \mu_{n}=1 \quad\left(\mu_{n} \geq 0 ; n=k-1, k, k+1, \ldots\right) \tag{3.9}
\end{equation*}
$$

Proof. Let a function $f(z)$ of the form (1.16) belong to the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$. Setting

$$
\mu_{n}=\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n} \quad(n=k, k+1, k+2, \ldots) \quad \text { and } \quad \mu_{k-1}=1-\sum_{n=k}^{\infty} \mu_{n}
$$

we see that $\mu_{n} \geq 0(n=k, k+1, k+2, \ldots)$. Since $\mu_{k-1} \geq 0$, by (2.1), we thus have

$$
\begin{aligned}
\sum_{n=k-1}^{\infty} \mu_{n} f_{n}(z) & =\left(1-\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n}\right) z^{p}+\sum_{n=k}^{\infty}\left(z^{p}-\frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} z^{n}\right) \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n} \\
& =z^{p}-\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n} z^{p}+\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n} z^{p}-\sum_{n=k}^{\infty} a_{n} z^{n} \\
& =z^{p}-\sum_{n=k}^{\infty} a_{n} z^{n}=f(z)
\end{aligned}
$$

and the condition holds true.
Next, let a function $f(z)$ satisfy the condition (3.8). Then we have

$$
\begin{aligned}
f(z) & =\sum_{n=k-1}^{\infty} \mu_{n} f_{n}(z)=\mu_{k-1} f_{k-1}(z)+\sum_{n=k}^{\infty} \mu_{n} f_{n}(z) \\
& =\left(1-\sum_{n=k}^{\infty} \mu_{n}\right) z^{p}+\sum_{n=k}^{\infty} \mu_{n}\left(z^{p}-\frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} z^{n}\right) \\
& =z^{p}-\sum_{n=k}^{\infty} \mu_{n} \frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} z^{n} .
\end{aligned}
$$

Thus the function $f(z)$ is of the form (1.16), where

$$
a_{n}=\frac{(B-A)(p-\lambda) \mu_{n}}{n(1+B) \Gamma_{n}} \quad(n=k, k+1, k+2, \ldots)
$$

It is sufficient to prove that the assertion (2.1) holds true. Since

$$
\sum_{n=k}^{\infty} n(1+B) \Gamma_{n} a_{n}=\sum_{n=k}^{\infty}(B-A)(p-\lambda) \mu_{n}=(B-A)(p-\lambda)\left(1-\mu_{k-1}\right) \leq(B-A)(p-\lambda)
$$

the required condition is indeed true.
From Theorem 3, we obtain the following corollary.
Corollary 4. The class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ is convex. The extremal points are the functions $f_{k-1}(z)$ and $f_{n}(z)(n \geq k)$ given by (3.6) and (3.7), respectively.

4. The radii of close-to-convexity and convexity

Theorem 4. The radius of p-valently close-to-convex for the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ is given by

$$
\begin{equation*}
R^{*}\left(\Phi_{k}^{p}(q, s ; A, B, \lambda)\right)=\inf _{n \geq k}\left[\frac{p(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}} \tag{4.1}
\end{equation*}
$$

where Γ_{n} is defined by (1.9). The result is sharp.

Proof. It is sufficient to show that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|<p \quad(z \in U(r) ; 0<r \leq 1) \tag{4.2}
\end{equation*}
$$

Since

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|=\left|-\sum_{n=k}^{\infty} n a_{n} z^{n-p}\right|
$$

putting $|z|=r$, the condition (4.2) is true if

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{n}{p} a_{n} r^{n-p} \leq 1 \tag{4.3}
\end{equation*}
$$

By Theorem 1, we have

$$
\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n} \leq 1
$$

where Γ_{n} is defined by (1.9). Thus the condition (4.3) is true if

$$
\frac{n}{p} r^{n-p} \leq \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} \quad(n=k, k+1, k+2, \ldots)
$$

that is, if

$$
r \leq\left[\frac{p(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}} \quad(n=k, k+1, k+2, \ldots)
$$

It follows that any function $f(z) \in \Phi_{k}^{p}(q, s ; A, B, \lambda)$ is p-valently close-to-convex in the $\operatorname{disc} U\left(R^{*}\left(\Phi_{k}^{p}(q, s ; A, B, \lambda)\right)\right)$, where $R^{*}\left(\Phi_{k}^{p}(q, s ; A, B, \lambda)\right)$ is defined by (4.1).

Corollary 5.

$$
R^{*}\left(\Phi_{k}^{p}(s ; A, B, \lambda)\right)= \begin{cases}1, & \left(\alpha_{j} \geq \beta_{j}, j=1, \ldots, s\right), \tag{4.4}\\ \min _{n \geq k}\left[\frac{p(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}}, & \left(\alpha_{j}<\beta_{j}, j=1, \ldots, s\right)\end{cases}
$$

where Γ_{n} is defined by (1.9). The result is sharp.
Proof. By Corollary 1 and Lemmas 1 and 2 , we have

$$
\Phi_{k}^{p}(s ; A, B, \lambda) \subset T_{p}^{*}(\lambda) \quad\left(\alpha_{j} \geq \beta_{j}, j=1, \ldots, s\right)
$$

By Theorem 4, any function $f(z) \in \Phi_{k}^{p}(s ; A, B, \lambda)$ is p-valently close-to-convex in the disc $U(r)$, where

$$
r=\inf _{n \geq k}\left(d_{n}\right)^{\frac{1}{(n-p)}}\left(d_{n}=\frac{p(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right)
$$

Since, for $\alpha_{j}<\beta_{j}(j=1, \ldots, s)$, we have

$$
\lim _{n \rightarrow \infty} d_{n}=d<1, \quad \lim _{n \rightarrow \infty}\left(d_{n}\right)^{\frac{1}{n-p}}=1 \quad \text { and } \quad d_{n}>0 \quad(n=k, k+1, k+2, \ldots)
$$

the infimum of the set $\left\{\left(d_{n}\right)^{\frac{1}{(n-p)}}: n \geq k\right\}$ is realized for an element of this set for some $n=n_{0}$. Moreover, the function

$$
f_{n_{0}}(z)=z^{p}-\frac{(B-A)(p-\lambda)}{n_{0}(1+B) \Gamma_{n_{0}}} z^{n_{0}}
$$

belongs to the class $\Phi_{k}^{p}(s ; A, B, \lambda)$, and for $z=\left(d_{n_{0}}\right)^{\frac{1}{\left(n_{0}-p\right)}}$, we have

$$
\operatorname{Re}\left\{\frac{f_{n_{0}}^{\prime}(z)}{z^{p-1}}\right\}=0
$$

Thus the result is sharp.

From Theorem 4 we can obtain direct estimation of the radius of p-valently close-to-convex for the class $\Phi_{k}^{p}(s ; A, B, \lambda)$ with $\alpha_{j} \leq \beta_{j}(j=1, \ldots, s)$.

Corollary 6. If a function $f(z)$ belongs to the class $\Phi_{k}^{p}(s ; A, B, \lambda)$ with $\alpha_{j} \leq \beta_{j}(j=1, \ldots, s)$, then $f(z)$ is p-valently close-toconvex in the disc $U\left(r^{*}\right)$, where

$$
\begin{equation*}
r^{*}=\frac{\alpha_{1} \ldots \ldots \alpha_{s}}{\beta_{1} \ldots \ldots \beta_{s}} \tag{4.5}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\frac{p(1+B)}{(B-A)(p-\lambda)}>1 \quad(0 \leq B \leq 1 ;-B \leq A<B ; 0 \leq \lambda<p ; p \in N) \tag{4.6}
\end{equation*}
$$

and, for $\alpha_{j} \leq \beta_{j}(j=1, \ldots, s)$,

$$
\begin{aligned}
\Gamma_{n} & =\frac{\left(\alpha_{1}\right)_{n-p} \ldots \ldots\left(\alpha_{s}\right)_{n-p}}{\left(\beta_{1}\right)_{n-p} \ldots . .\left(\beta_{s}\right)_{n-p}} \geq \frac{\left(\alpha_{1}\right)^{n-p} \ldots \ldots\left(\alpha_{s}\right)^{n-p}}{\left(\beta_{1}\right)^{n-p} \ldots . .\left(\beta_{s}\right)^{n-p}} \\
& =\left(\frac{\alpha_{1} \ldots \ldots \alpha_{s}}{\beta_{1} \ldots \ldots \beta_{s}}\right)^{n-p}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
R^{*}\left(\Phi_{k}^{p}(s ; A, B, \lambda)\right) & =\inf _{n \geq k}\left[\frac{p(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}} \\
& \geq \frac{\alpha_{1} \ldots \ldots \alpha_{s}}{\beta_{1} \ldots \ldots \beta_{s}}
\end{aligned}
$$

which completes the proof of Corollary 6.
Theorem 5. The radius of p-valently convex for the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$ is given by

$$
\begin{equation*}
R^{c}\left(\Phi_{k}^{p}(q, s ; A, B, \lambda)\right)=\inf _{n \geq k}\left[\frac{p^{2}(1+B) \Gamma_{n}}{n(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}} \tag{4.7}
\end{equation*}
$$

where Γ_{n} is defined by (1.9). The result is sharp.
Proof. It is sufficient to show that $\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right|<p(z \in U(r) ; 0<r \leq 1)$. Using similar arguments as given by Theorem 4, we can get the result.

From Theorem 5 we can obtain direct estimation of the radius of p-valently convex for the class $\Phi_{k}^{p}(s ; A, B, \lambda)$.
Corollary 7. If a function $f(z)$ belongs to the class $\Phi_{k}^{p}(s ; A, B, \lambda)\left(\alpha_{1} \leq \beta_{1}+1\right) ; \alpha_{1} \leq p+1 ; \alpha_{j} \leq \beta_{j}(j=2, \ldots, s)$, then $f(z)$ is p-valently convex in the disc $U(r)$, where

$$
\begin{equation*}
r=\frac{\left(\alpha_{1}-1\right)\left(\alpha_{2}\right) \ldots \ldots\left(\alpha_{s}\right)}{\left(\beta_{1}\right)\left(\beta_{2}\right) \ldots \ldots \ldots \ldots .\left(\beta_{s}\right)} \tag{4.8}
\end{equation*}
$$

Proof. For $\alpha_{1} \leq p+1$, we have

$$
\frac{p}{n}\left(\frac{\alpha_{1}+n-p-1}{\alpha_{1}-1}\right) \geq 1
$$

Since

$$
\begin{aligned}
\frac{p}{n} \Gamma_{n} & =\frac{p}{n}\left(\frac{\left(\alpha_{1}\right)_{n-p} \ldots .\left(\alpha_{s}\right)_{n-p}}{\left(\beta_{1}\right)_{n-p} \ldots .\left(\beta_{s}\right)_{n-p}}\right) \\
& =\frac{p}{n}\left(\frac{\alpha_{1}+n-p-1}{\alpha_{1}-1}\right) \frac{\left(\alpha_{1}-1\right)_{n-p}\left(\alpha_{2}\right)_{n-p} \ldots\left(\alpha_{s}\right)_{n-p}}{\left(\beta_{1}\right)_{n-p} \ldots \ldots \ldots \ldots \ldots \ldots\left(\beta_{s}\right)_{n-p}} \\
& \geq \frac{p}{n}\left(\frac{\alpha_{1}+n-p-1}{\alpha_{1}-1}\right) \frac{\left(\alpha_{1}-1\right)^{n-p} \alpha_{2}^{n-p} \ldots \alpha_{s}^{n-p}}{\beta_{1}^{n-p} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \beta_{s}^{n-p}} \\
& \geq\left(\frac{\left(\alpha_{1}-1\right) \alpha_{2} \ldots \alpha_{s}}{\beta_{1} \ldots \ldots \ldots \ldots \ldots \beta_{s}}\right)^{n-p}
\end{aligned}
$$

by (4.6), we have

$$
\begin{aligned}
R^{c}\left(\Phi_{k}^{p}(s ; A, B, \lambda)\right) & =\inf _{n \geq k}\left[\frac{p^{2}(1+B) \Gamma_{n}}{n(B-A)(p-\lambda)}\right]^{\frac{1}{(n-p)}} \\
& =\inf _{n \geq k}\left[\frac{p(1+B)}{(B-A)(p-\lambda)} \cdot \frac{p \Gamma_{n}}{n}\right]^{\frac{1}{(n-p)}} \\
& \geq \frac{\left(\alpha_{1}-1\right)\left(\alpha_{2}\right) \ldots\left(\alpha_{s}\right)}{\left(\beta_{1}\right)\left(\beta_{2}\right) \ldots \ldots\left(\beta_{s}\right)},
\end{aligned}
$$

which completes the proof of Corollary 7.

5. Modified Hadamard product

For the functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{n=k}^{\infty} a_{n, j} z^{n} \quad\left(a_{n, j} \geq 0 ; j=1,2 ; k, p \in N\right), \tag{5.1}
\end{equation*}
$$

we denote by $\left(f_{1} \otimes f_{2}\right)(z)$ the modified Hadamard product (or convolution) of the functions $f_{1}(z)$ and $f_{2}(z)$, that is,

$$
\begin{equation*}
\left(f_{1} \otimes f_{2}\right)(z)=z^{p}-\sum_{n=k}^{\infty} a_{n, 1} a_{n, 2} z^{n} . \tag{5.2}
\end{equation*}
$$

Theorem 6. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $\Phi_{k}^{p}\left(q, s ; A, B\right.$, λ). If the sequence $\left\{n \Gamma_{n}\right\}$ is nondecreasing, then $\left(f_{1} \otimes f_{2}\right)(z) \in \Phi_{k}^{p}(q, s ; A, B, \delta)$, where

$$
\begin{equation*}
\delta=p-\frac{(B-A)(p-\lambda)^{2}}{k(1+B) \Gamma_{k}} . \tag{5.3}
\end{equation*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [16], we need to find the largest δ such that

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\delta)} a_{n, 1} a_{n, 2} \leq 1 . \tag{5.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n, 1} \leq 1 \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n, 2} \leq 1, \tag{5.6}
\end{equation*}
$$

by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} \sqrt{a_{n, 1} a_{n, 2}} \leq 1 . \tag{5.7}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\delta)} a_{n, 1} a_{n, 2} \leq \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} \sqrt{a_{n, 1} a_{n, 2}} \quad(n \geq k) \tag{5.8}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(p-\delta)}{(p-\lambda)} \quad(n \geq k) . \tag{5.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} \quad(n \geq k) \tag{5.10}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{(B-A)(p-\lambda)}{n(1+B) \Gamma_{n}} \leq \frac{(p-\delta)}{(p-\lambda)} \quad(n \geq k) \tag{5.11}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\delta \leq p-\frac{(B-A)(p-\lambda)^{2}}{n(1+B) \Gamma_{n}} \quad(n \geq k) \tag{5.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Phi(n)=p-\frac{(B-A)(p-\lambda)^{2}}{n(1+B) \Gamma_{n}} \tag{5.13}
\end{equation*}
$$

is an increasing function of $n(n \geq k)$, letting $n=k$ in (5.13), we obtain

$$
\begin{equation*}
\delta \leq \Phi(k)=p-\frac{(B-A)(p-\lambda)^{2}}{k(1+B) \Gamma_{k}} \tag{5.14}
\end{equation*}
$$

which proves the main assertion of Theorem 6 .
Finally, by taking the functions $f_{j}(z)(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=z^{p}-\frac{(B-A)(p-\lambda)}{k(1+B) \Gamma_{k}} z^{k} \quad(j=1,2 ; k, p \in N) \tag{5.15}
\end{equation*}
$$

we can see that the result is sharp.
Theorem 7. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $\Phi_{k}^{p}(q, s ; A, B, \lambda)$. If the sequence $\left\{n \Gamma_{n}\right\}$ is nondecreasing. Then the function

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=k}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n} \tag{5.16}
\end{equation*}
$$

belongs to the class $\Phi_{k}^{p}(q, s ; A, B, \tau)$, where

$$
\begin{equation*}
\tau=p-\frac{2(B-A)(p-\lambda)^{2}}{k(1+B) \Gamma_{k}} \tag{5.17}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(z)(j=1,2)$ defined by (5.15).
Proof. By virtue of Theorem 1, we obtain

$$
\begin{equation*}
\sum_{n=k}^{\infty}\left\{\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right\}^{2} a_{n, 1}^{2} \leq\left\{\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n, 1}\right\}^{2} \leq 1 \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=k}^{\infty}\left\{\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right\}^{2} a_{n, 2}^{2} \leq\left\{\sum_{n=k}^{\infty} \frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)} a_{n, 2}\right\}^{2} \leq 1 \tag{5.19}
\end{equation*}
$$

It follows from (5.18) and (5.19) that

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{1}{2}\left\{\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right\}^{2}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 \tag{5.20}
\end{equation*}
$$

Therefore, we need to find the largest τ such that

$$
\begin{equation*}
\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\tau)} \leq \frac{1}{2}\left\{\frac{n(1+B) \Gamma_{n}}{(B-A)(p-\lambda)}\right\}^{2} \quad(n \geq k) \tag{5.21}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\tau \leq p-\frac{2(B-A)(p-\lambda)^{2}}{n(1+B) \Gamma_{n}} \quad(n \geq k) \tag{5.22}
\end{equation*}
$$

Since

$$
\begin{equation*}
D(n)=p-\frac{2(B-A)(p-\lambda)^{2}}{n(1+B) \Gamma_{n}} \tag{5.23}
\end{equation*}
$$

is an increasing function of $n(n \geq k)$, we readily have

$$
\begin{equation*}
\tau \leq D(k)=p-\frac{2(B-A)(p-\lambda)^{2}}{k(1+B) \Gamma_{k}} \tag{5.24}
\end{equation*}
$$

and Theorem 8 follows at once.
Remark 1. Taking $A=-\rho$ and $B=\rho(0<\rho \leq 1)$ in the above results, we obtain the corresponding results for the class $\Phi_{k}^{p}(q, s ; \lambda, \rho)$.

Acknowledgment

The authors would like to thank the referee of the paper for the helpful suggestions.

References

[1] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
[2] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japan. 44 (1996) 31-38.
[3] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1996) 429-446.
[4] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965) 755-758.
[5] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966) 352-357.
[6] Vinod Kumar, S.L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, Indian J. Pure Appl. Math. 15 (11) (1984) 1216-1227.
[7] Vinod Kumar, S.L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, Indian J. Pure Appl. Math. 15 (11) (1984) $1228-1238$.
[8] H.M. Srivastava, M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl. 171 (1992) 1-13; 192 (1995) 673-688.
[9] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978) 53-59.
[10] H.M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and their Applications, Halsted Press (Ellis Horwood Limited), Chichester, 1989, John Wiley and Sons, New York, Chichester, Brisbane and Toronto.
[11] M.K. Aouf, Certain class of analytic functions associated with the generalized hypergeometric function, J. Math. Appl. 29 (2007) 17-31.
[12] M.K. Aouf, A generalization of multivalent functions with negative coefficients, Bull. Korean Math. Soc. 25 (2) (1988) $221-232$.
[13] M.K. Aouf, Certain classes of p-valent functions with negative coefficients. II, Indian J. Pure Appl. Math. 19 (8) (1988) 761-767.
[14] S.K. Lee, S. Owa, H.M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas. Math. 36 (1989) 121-128.
[15] M.K. Aouf, H.E. Darwish, Some classes of multivalent functions with negative coefficients, Honam Math. J. 16 (1) (1994) 119-135.
[16] A. Schild, H. Silverman, Convolution univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975) 99-107.

[^0]: * Corresponding author.

 E-mail addresses: mkaouf127@yahoo.com (M.K. Aouf), darwish333@yahoo.com (H.E. Darwish).

