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1 |  INTRODUCTION

MapReduce is a framework for processing huge datasets 

in parallel and distributed computing environments [1]. It 

adopts a centralized architecture; one node acts as a master 

and all other nodes serve as workers [2]. The master node 

schedules the tasks, while the workers are responsible for 

performing the execution of the map and reduce tasks.

Fault tolerance is one of the most critical issues for 

MapReduce [3]. During the execution of a large volume of 

data, failure is a serious issue [4,5]. Some of the faults in 

a workflow environment include network failures, node 

crashes, memory leak, disk failures, out-of-disk space, and 

task failures [6]. In a MapReduce cluster, master failures are 

tolerated by setting up an effective standby master. Failed 

tasks are automatically rescheduled from scratch, which sig-

nificantly increases task completion time. Suppose that the 

total execution time of task i on node j is Tij. If task i encoun-

ters a failure at time t, then t ≪ Tij means that the failed job 

has been redone effectively. If a failure occurred at the time 

when all jobs had been done, then t ≫ Tij; that is, redoing the 

failed job is computationally expensive as most of the jobs 

have already been done [7]. Development of an efficient fault 

tolerance mechanism in the MapReduce environment is an 

active research area. Moreover, current works rely on exter-

nal storage facilities for storing the computed key-value pairs. 

However, this could increase the task latency because of the 

slower access time of external storage disks.
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computing environments. However, a single machine failure during the runtime of 

MapReduce tasks can increase completion time by 50%. MapReduce handles task 

failures by restarting the failed task and re-computing all input data from scratch, re-

gardless of how much data had already been processed. To solve this issue, we need 

the computed key-value pairs to persist in a storage system to avoid re-computing 

them during the restarting process. In this paper, the task failure resilience (TFR) 

technique is proposed, which allows the execution of a failed task to continue from 

the point it was interrupted without having to redo all the work. Amazon ElastiCache 

for Redis is used as a non-volatile cache for the key-value pairs. We measured the 

performance of TFR by running different Hadoop benchmarking suites. TFR was 

implemented using the Hadoop software framework, and the experimental results 

showed significant performance improvements when compared with the perfor-

mance of the default Hadoop implementation.
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In this paper, we propose the TFR technique, which al-

lows the MapReduce execution to continue from the state 

where the failure has occurred by recovering the processed 

bytes from the external source. The external source used 

here is Amazon ElastiCache for Redis. Compared with other 

in-memory data structure stores, Redis makes it very simple 

to manipulate complex data structures.

The main contributions of this paper are listed as follows:

• We modified the original MapReduce workflow by im-

plementing the TFR algorithm in the standard map and 

reduce code, which makes it possible to implement fault 

tolerance.

• The following changes were done in the standard map and 

reduce code:

a. A Hadoop application is integrated with Amazon 

ElastiCache for Redis.

b. Whenever a mapper generates an intermediate key-

value pair, the pair is sent along with the metadata to an 

external source.

c. During the execution of the shuffle and sort phases in 

the reducer node, the generated key-value pairs are sent 

to the external source. Moreover, the mapper fetches the 

results of the shuffle and sort phases from the external 

source and executes the reduce tasks.

d. If the execution fails, a retry attempt will skip the exe-

cution of the accomplished data recorded in the external 

source.

• We evaluated the proposed Hadoop framework using the 

HiBench Benchmarking Suite.

TFR is implemented using Hadoop, an Apache open-

source software framework built to support data-intensive ap-

plications running on large commodity clusters. The Hadoop 

framework is designed mainly for the parallel and distributed 

processing of massive data residing in a cluster of commodity 

servers. To create a connection between Hadoop and Amazon 

ElastiCache for Redis, TFR uses the Jedis client code, which 

is a client library written in Java for Redis. TFR sends a re-

quest to the proxy server to store and retrieve data to and from 

the Redis cache. The Hadoop source code was modified by 

implementing TFR for the map phase and reduce phase.

The HiBench Benchmark Suite was used to analyze 

the behavior and performance improvement of TFR. This 

benchmark suit was used to perform a thorough comparison 

between the default Hadoop implementation and our pro-

posed Hadoop application in terms of execution time. The 

benchmarks used in the experiment were WordCount, Sort, 

TeraSort, and PageRank. The experimental results showed 

significant performance improvements with TFR when com-

pared with the performance of the default Hadoop implemen-

tation. The experimental data help in tuning the MapReduce 

applications.

The rest of the paper is organized as follows. Section 2 

discusses the related works. Section  3 illustrates the basic 

execution flow of MapReduce. Section 4 describes the work-

ings of Amazon ElastiCache for Redis. Section 5 presents the 

design and implementation of TFR. Section 6 discusses the 

results of the performance evaluation. Finally, Section 7 con-

cludes this paper and describes the future work.

2 |  RELATED WORKS

Many research studies have been conducted to improve the 

performance of MapReduce execution in different aspects. 

Some studies focused on implementing the job scheduling 

algorithms to increase the execution time of MapReduce 

tasks, while others focused on improving the execution of 

MapReduce from task failures by utilizing any fault-toler-

ance strategy. Moreover, some studies concentrated on op-

timizing the configuration settings to improve the execution 

flow of the MapReduce framework.

A resilient map task that uses checkpointing tactics was 

introduced in [3] to make a small change in the original 

MapReduce execution workflow and to gain a finer grained 

fault tolerance. A mapper informs the master node with the 

metadata of the spilled files that include the task ID, task 

retry ID, input task range, host location, and task size. The 

execution flow of this technique allows the reducers to shuf-

fle the spilled files of a task from different task retry attempts. 

The technique used here creates a Java cache using HashMap, 

which requires main memory and creates more overhead.

According to a recent study [8], a single job failure can 

result in a 50% increase in total execution time. Moreover, 

applications may fail for a variety of reasons that we cannot 

count. To understand how an application will behave during 

faults in greater detail, we need to categorize the faults by 

using abstract models. These models help us to tolerate the 

faults. The Byzantine fault-tolerant model in [9] provides a 

fault tolerance framework to the Hadoop system. A simplistic 

solution is proposed here by executing the job more than once 

using the original Hadoop application. The map and reduce 

task is re-executed until the fault limit + 1 output match. The 

application executes the tasks many times to detect the ar-

bitrary faults. The completion time of the task execution is 

sensitive to a slow-running task [10], as only one slow task 

is enough to cause a serious delay in the whole job comple-

tion. Hadoop tries to detect slow-running tasks and launches 

a checkpoint from them. The progress score of each task is 

monitored to determine the slow-running task. The progress 

score is simply the fraction of the key-value pairs for the map 

tasks and the completion of the copy, sort, and reduce phases 

for the reduce task.

Lin [11] proposed a library-level checkpointing approach 

that uses a library to create checkpoints. A drawback of this 
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approach is that checkpoints cannot be created for certain 

shell scripts and system calls as the system files cannot be ac-

cessed by a library. This proposed approach is implemented 

in message passing interface (MPI)-based MapReduce data 

computing applications.

Quiané-Ruiz and others [12] proposed the RAFTing 

MapReduce, which piggybacks checkpoints on the task 

progress computation. A local checkpointing algorithm that 

allows a map task to store the metadata of the task progress 

on a local disk has been implemented. This work tries to 

create query metadata checkpointing to keep track of the 

mapping between the input data and the intermediate data.

Gu and others [13] proposed the SHadoop, an optimized 

version of Hadoop to improve the MapReduce performance in 

Hadoop clusters. SHadoop aims at improving the internal exe-

cution time of short jobs. The authors experimentally evaluated 

the scalability of SHadoop compared with that of the original 

version of Hadoop by scaling the data with respect to the nodes 

and by scaling the number of nodes with respect to the data.

The Hadoop++ method in [14] applies indexing on 

Hadoop without changing the original source code. The par-

tition and indexing algorithm is added on top of the Hadoop 

interfaces. The authors built a new distributed database 

called HadoopDB, which is designed to utilize the fault-tol-

erant ability. The authors claimed that Hadoop++ runs 20 

times faster than the original Hadoop. However, they failed 

to incorporate the Hadoop fault tolerant strategy and, thus, 

their method suffers from similar failure issues to those of 

the original version of Hadoop. As each type of these fault 

tolerance strategies and optimizations only pertains to a cer-

tain type of application, they lack general applicability. Our 

fault tolerance strategy is a generalized approach to improve 

the execution performance of MapReduce tasks.

3 |  THE MAPREDUCE 
FRAMEWORK

MapReduce is a programming framework based on two fun-

damental pieces of code: a map function and a reduce func-

tion. It is capable of processing an enormous amount of data 

in parallel. The MapReduce model works in a master-slave 

architecture. In the map step [15], the master node takes a 

large problem input, divides it into smaller subproblems, and 

then distributes them to worker nodes. The worker nodes ex-

ecute the tasks and handle the data movement between the 

mappers and reducers.

MapReduce tasks take key-value pairs as input. Typically, 

the input and output data are stored in the Hadoop Distributed 

File System (HDFS). The InputFormat class in MapReduce 

defines how these input files are to be split and read. It cre-

ates the InputSplit for MapReduce tasks. InputSplit is a log-

ical representation of data. The input splits are divided into 

records, which are processed by the mappers. Each split has 

one map task. The number of maps is handled by the number 

of blocks in the input data, and the number of maps is deter-

mined by the InputFormat as follows:

Here, Split_size is based on the HDFS block size. The 

default size of an HDFS block is 64 MB and can be extended 

to 128 MB. In Hadoop, the user can define the Split_size and 

can control it based on the Input_data_size by setting the ma-

pred.max.split.size property during job execution. Consider a 

block size of 100 MB and expect 1 TB of input data; then, the 

number of maps is calculated as

The performance of the data extraction task is scaled 

by having many mappers running in parallel. Equation (2) 

shows that there are 10 000 input splits, and it can spawn 10 

000 map jobs in total for an input size of 1 TB. These 10 000 

map jobs are launched in parallel to convert the input splits 

into intermediate key-value pairs. Huge chunks of interme-

diate data will be produced by each of the mappers. The 

stream of these intermediate data generated by each mapper 

is buffered in memory and periodically stored on the local 

disk of the mapper. This output record is summarized be-

fore it is passed to the reducer. There are two phases in the 

reduce function: shuffle and sort. The output from the map-

pers is sorted and spawned as input to the reducers. The re-

ducer takes the outputs of the mappers by contacting every 

mapper via a remote procedure call and processes them 

to produce the final result, which is stored in the HDFS. 

Figure 1 shows the execution flow of MapReduce, which is 

a framework for pa.

The execution flow of MapReduce is explained as follows:

 1. The Hadoop job client submits the job copies and the 

jar files to the HDFS. The Java MR API is the JobClient 

class, which acts as an interface for the user job to in-

teract with the cluster. Hadoop splits the input data into 

chunks, and the number of mappers is calculated using 

(1).

 2. Each mapper takes one split at a time and is executed in 

parallel.

 3. The input data are processed by these mappers, which 

generate the intermediate key-value pairs.

 4. The mappers store their output in an in-memory buffer 

of about 100 MB by default. When the buffer reaches a 

(1)No_of_mappers=
Input_data_size

Split_size
.

1 TB = 1 000 000 MB,

(2)No_of_mappers=
1 TB

100 MB
=

1 000 000

100
=10 000 mappers.
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certain threshold limit, the contents are spilled to the local 

disk of a machine on which the map task is running. Every 

time a buffer reaches the spill threshold, a new spill file is 

created. There are thus many spill files created as a result.

 5. If the combiner function is enabled before the map out-

puts are written to the disk, all intermediate key-value 

pairs per mapper are merged into one output file.

 6. The results of the combiner function are written to the 

local disk. All the output files of a map task are collected 

over the network and sent to the reducer nodes.

 7. The input data to the reducer are shuffled on the reducer 

node. Then, they are sorted and grouped together by key.

 8. The shuffled data are written to the local disk.

 9. The output data from the shuffle and sort phases are pro-

vided as input to the reducers.

 10. The output from the reducer nodes is written to the 

HDFS.

In the Hadoop pipeline framework, when a system failure 

occurs, the whole process of the above MapReduce execution 

flow is computed again. Even after the system failure, these 

intermediate key-value pairs are fed to another cluster of re-

ducers. When a failure occurs in a task, the corresponding 

task is rescheduled to other reliable nodes, which start the 

execution from scratch after the recovery. The TFR technique 

is proposed to overcome this problem by eliminating the need 

to restart a failed task from scratch.

4 |  AMAZON ELASTICACHE FOR 
REDIS

Redis is an open-source in-memory key-value store for use 

as a cache. It eliminates the need to access a disk. Using 

Amazon ElastiCache for Redis, we can add an in-memory 

layer to the Hadoop application design. A Redis cluster 

is created with six shards and 42.84 GB of memory using 

the AWS Management Console. Amazon ElastiCache sup-

ports high availability using Redis replication. The key-

value pair is partitioned across six shards, and each shard 

consists of one read/write primary node and two read-only 

replica nodes. Each of these read replicas keeps a copy of 

the key-value pair from the primary shards. A Hadoop ap-

plication writes only to the primary nodes. Read scalability 

is enhanced through the read replicas and protects against 

data loss.

We have enabled the automatic failover functionality 

of Amazon ElastiCache on our Redis cluster. To improve 

the fault tolerance, we provision the primary node and read 

replicas in multiple availability zones (multi-AZ). Consider 

the case of a Redis replication group with a primary node 

in AZ-a and read replicas in AZ-b and AZ-c. If the pri-

mary node fails, the read replica is promoted as the primary 

cluster. Amazon ElastiCache for Redis creates a new replica 

in Az-a. When the entire cluster fails, all the nodes in the 

failed cluster are recreated and provisioned in the same AZ 

as that of the original nodes. The data in the primary node 

and read replicas can be backed up if any failure occurs.

Partitioning the heavy load of key-value pairs over a 

greater number of Redis nodes reduces the access bottle-

necks. Proxy-assisted partitioning is implemented, which 

allows sending requests to a proxy that speaks to the Redis 

instance. Redis with a cluster mode-enabled state has a con-

figuration end point that knows all the primary nodes and 

the end points of the nodes in the cluster. When a Hadoop 

application writes or reads the key-value pairs, Redis can de-

termine which shard the key belongs to and which end point 

to use in that shard. A Redis cluster has 16,384 hash slots. 

To map keys to hash slots, Redis computes the hash slot of 

a key using the following formula: CRC16 (key) % 16 384, 

F I G U R E  1  MapReduce execution 

flow [Colour figure can be viewed at 

wileyonlinelibrary.com]
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where “%” is the modulus operator. Every shard in a cluster 

is responsible for a subset of hash slots.

• Shard s1 = slots 0–2730

• Shard s2 = slots 2731–5461

• Shard s3 = slots 5462–8192

• Shard s4 = slots 8193–10 923

• Shard s5 = slots 10 924–13 654

• Shard s6 = slots 13 655–16 383

Redis can flush the cache in the background using the 

redis-cli FLUSH command after the corresponding map-re-

duce task is completed.

5 |  IMPLEMENTATION OF TFR

To resolve the above mentioned issues in Sections 1 and 2, we 

designed a new MapReduce prototype system and implemented 

it on the basis of the Amazon ElastiCache for Redis for a faster 

recovery during the task failures. In this section, the conceptual 

design of TFR is outlined. In the original version of Hadoop, 

if a task execution fails, the whole task will be executed again. 

This is because the MapReduce framework does not keep track 

of the task progress after a task failure. The main goal of TFR 

is to recover the processed bytes at a faster rate to continue the 

execution from the state where the failure has occurred. In [16], 

the intermediate data from the map and reduce tasks are stored 

sequentially in files. To manage these intermediate files, the au-

thors implemented a distributed message management system 

that aggregates the messages effectively.

A natural solution to recover the processed intermediate 

data during a task failure is to save the ongoing computation 

to some stable storage. Traditionally, for the storage of a mas-

sive amount of data, companies have two choices: vertical and 

horizontal scaling [17]. Vertical scaling involves adding more 

RAM modules and CPUs to a single large machine. Horizontal 

scaling involves splitting the data into shards and storing them 

over multiple machines in a distributed manner. Data storage 

using cloud computing is a conceivable option for many small 

to huge business organizations that use big data technology.

We need to leverage cloud computing solutions to address 

big data problems. Amazon ElastiCache for Redis [18] easily 

deploys a cache environment that accelerates the high-vol-

ume application workload. It caches the data and provides 

data retrieval in submilliseconds. The two well-known dis-

tributed memory caching systems are Memcached and the 

Redis protocol-compliant cache engine software. We cre-

ated a Hadoop application that uses Amazon ElastiCache for 

Redis to recover all the processed data. It lightens the burden 

associated with heavy request loads and increases the overall 

performance. There are two main implementation techniques 

available in the Redis ElastiCache data store [19].

• A client application needs to select the right Redis instance 

to read or write the data.

• A client application should send the request to a proxy 

server that can communicate using the Redis protocol. This 

protocol, in turn, sends the request to the right Redis node.

TFR substitutes Amazon ElastiCache for Redis as the 

in-memory key-value store for both the in-memory cir-

cular buffer of the mapper and the local file system. The 

input of the map task and the output of the reduce task 

reside in the HDFS. TFR utilizes Amazon ElastiCache for 

Redis only for storing the intermediate key-value pairs. 

TFR is fast because it requires only a few sub-millisec-

onds to collect all the saved data required. When a mapper 

creates the intermediate key-value pairs, which are quite 

large, TFR stores them along with their corresponding 

timestamp in the Redis cache. Several changes are re-

quired to utilize TFR.

Figure 2 shows the execution flow of the TFR MapReduce 

workflow.

F I G U R E  2  Proposed MapReduce 

execution flow
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 1. A client submits a job with the Hadoop jar command and 

copies the jar files to the HDFS.

 2. The Java MR API is the JobClient class, which acts as an 

interface for the user job to interact with the cluster. The 

class creates tasks on the basis of the file splits (blocks).

 3. It submits the task to the MR job controller, which is 

the application master that assigns the job to the mappers 

and reducers.

 4. The map phase is executed by reading the data from the 

HDFS.

 5. Each map task generates the intermediate key-value 

pairs.

 6. The results of the mapper are stored in the Redis cache 

using the Jedis client API.

 7. The results of the map task are shuffled and sorted in the 

reducer node by retrieving them from the Redis cache.

 8. The output data from the shuffle and sort phases are 

stored in the Redis cache through the Jedis client code.

 9. These output data can be retrieved from the Redis cache 

to provide as input to the reducers.

 10. The final reduced results are written to the HDFS.

We save the ongoing computation of the map and reduce 

phases in the Redis cache as follows:

1. We download the Jedis client, which contains all the logic 

for connecting to the nodes of Amazon ElastiCache for 

Redis.

2. The MapReduce program of the Hadoop application is 

modified so that it periodically updates the total processed 

bytes and the timestamp to the Redis cache by making a 

request to the proxy server. Read and write operations are 

done through this request. Redis can handle up to a mil-

lion requests per second per cache node. Using this auto 

discovery, the Hadoop application program connects to all 

the nodes in the cluster without any intervention.

TFR is implemented by modifying the source code of 

the original version of Hadoop. We modified the following 

classes: OutputFormat, RecordWriter, Mapper, Reducer, and 

Driver. All these classes were modified to enable them to re-

cover the processed data to the Redis cache and to create a 

Jedis connection with Hadoop.

OutputFormat code: The OutputFormat class was mod-

ified to enable it to establish and verify the input job con-

figuration and to take a list of Redis instance nodes as a 

CSV structure and a Redis hash key to write all the output.

RecordWriter: We modified this class to enable it to 

write out the data to the Redis cache and to handle the 

connection to the Redis server via the Jedis client. The 

intermediate key-value pairs are written to the Redis in-

stance by making a request to a proxy server and pro-

vide an even distribution of all key-value pairs across all 

Redis nodes. A constructor is created to store the hash 

key to write to the Redis instance.

Mapper code: This class was modified to enable it to store 

the generated key-value pairs along with the timestamp of the 

Redis instance by making a request to the proxy server.

Reducer code: This class was modified to enable it to re-

trieve the mapper results from the right Redis instance and to 

store the shuffled and sorted results to the Redis instance by 

making a request to the proxy server.

Driver class: This code was modified to enable it to write 

out the data to the Redis cache.

5.1 | TFR for the map phase

Algorithm 1 outlines the pseudo-code of TFR for recov-

ering the intermediate key-value pairs from the map task 

failures. Each mapper is executed in parallel and stores the 

output as a key-value pair (see lines 1-4). TFR skips the 

storing of the intermediate data to a file system and sends 

them directly to the external source. The total processed 

bytes from each mapper are periodically updated in the 

Redis cache using the Jedis client. We first connect to the 

Redis server through the Jedis Java code. Lines 5 and 6 in 

Algorithm 1 are used to obtain the Jedis connection pool. 

Once the Jedis connection is established, it saves the data 

to the Redis cache (see lines 7 and 8).

In this work, the total processed bytes along with the 

hashKey and timestamp are stored in the Redis cache by 

sending a request to a proxy server, which then sends the 

request directly to the right Redis instance. Similar to the 

Java hash map, the Redis hash map is a key between the 

string keys and string values. The intermediate key-value 

pairs from each mapper are distributed equally across all 

Algorithm 1 TFR for the map phase

Input: (Key, Value) 

Begin

[1]: for each m in mapper 

[2]: Execute maptask (Object Key, Text Value)

[3]:           /*user-defined code to run the mapper class*/

[4]:              context.writeMapOutput (key1,    value1);

[5]:            Jedis jedis = new jedis ();

[6]:        jedis. connect ();

[7]:           writeMapOutput (Text key1, Text       

value1):

[8]:               jedis.set (hashKey, timestamp,   key1.toString

(), value1.toString ());

[9]:  if fail.isMapper ()

[10]:          jedis.get (hashKey, timestamp,  key1.toString (), 

value1.toString ());

End
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the Redis instance. Hence, hashKey can be used as a key to 

identify the right key-value pair of a corresponding mapper. 

Redis offers a timestamp facility to record the CPU statis-

tics, event logs, and times of occurrences of a particular 

event. The < timestamp, key, value > triplet denotes the ob-

servation recorded at a point in time. Generally, data arrive 

in an increasing timestamp order. Data are read from the 

Redis cache by specifying the time window. When a failure 

occurs, the execution begins from the state where the failure 

has occurred. Redis saves the database needed to restore 

to that state and provides a much more recent copy of the 

saved data using the timestamp to continue the execution by 

skipping it from the already processed bytes (see line 10 in 

Algorithm 1).

5.2 | TFR for the reduce phase

Algorithm 2 outlines the pseudo-code of TFR for recovering 

the processed bytes from the failed reduce task. The reduce 

phase occurs after the map phase.

First, we fetch the map output bytes from the Redis cache 

(see line 4 in Algorithm 2). In the shuffle and sort phases, 

data from the mappers are grouped and sorted together by 

key. The intermediate data from the mappers are transferred 

to one or more reducers. Then, the TFR writes the shuffled 

and sorted key-value pairs to the Redis cache (see lines 7 and 

8). The sorted output is given as input to the reducer nodes. If 

the failure occurs during the execution of the shuffle phase, 

the last saved bytes of the failed shuffled task are retrieved 

using the Jedis “get” method by attaching the timestamp to 

retrieve the data recorded at the time of occurrence of that 

event (see lines 10 and 11). Each reducer node obtains all the 

values associated with the same key. The result of the reducer 

is stored in the HDFS.

6 |  PERFORMANCE EVALUATION

In this section, we analyze the performance of TFR. 

Hadoop was used as the baseline and our prototype of TFR 

was based on Hadoop 2.6.5. In this work, we used Hadoop 

2.6.5 version to apply TFR on top of the original Hadoop 

interfaces. TFR can be implemented in any higher version 

of Hadoop to resolve the task failures efficiently. Most of 

the previous studies have implemented the fault tolerance 

strategy in Hadoop 1.x versions [2,9,12,13]. For a cluster 

setup, we ran our experiments on a 10-node cluster, where 

we dedicated one node to act as a master node and all other 

nodes to run as slave nodes in a virtual environment. We 

used Proxmox, which is an open-source virtual environ-

ment that is based on the Debian Linux distribution. Each 

node has an Intel processor clocked at 2.40 GHz, and it is 

equipped with 1.5 GB RAM and 200 GB HDDs. We de-

ployed Redis 2.8.22 on Amazon ElastiCache. The Redis 

API such as the Jedis code was used as an interface between 

the Hadoop application and Amazon ElastiCache for Redis 

to store and retrieve data from the Hadoop application to 

the Redis cache and vice versa. The capacity of the Redis 

cache was 42.84 GB, and the node type was m4.xlarge (for 

reference, see Table 1). We improved the performance of 

the Hadoop application by performing a faster recovery of 

the intermediate data from this high-throughput and low-

latency in-memory data store.

We performed a number of experiments separately to 

evaluate Algorithms 1 and 2. The HiBench Benchmarking 

Suite was used to assess the performance of the Hadoop 

framework in terms of execution time for MapReduce using 

the WordCount, Sort, TeraSort, and PageRank benchmarks. 

The said benchmark suite was installed and configured in 

all nodes. We ran our experiment by varying the sizes of the 

datasets. Table 1 shows the benchmarking environment used 

to test the performance of TFR. The experiments were de-

signed and tested to measure the following aspects:

Algorithm 2 TFR for the reduce phase

Input: (K1, V1)

Output: (K3, V3)

Begin

[1]: Execute shufflesort (Reducer reducerID,  

MapOutputCollector<Key1, Value1>)

[2]: Jedis jedis = new jedis ();

[3]: jedis. connect ();

[4]:         jedis.get (hashKey, timestamp,  key1.toString (), 

value1.toString ());

[5]: scheduleshuffle= new shuffle<Key1, 

Value1>(reducerID,MapOutputCollector, hashKey,     

key1, value1);

[6]: /*user-defined code to run the shuffle class*/

[7]:       context.writeShuffleOutput (key2, value2); 

[8]:       writeshuffleOutput (Text key2, Text value2): 

[9]:        jedis.set (hashKey, timestamp, key2.toString    (), 

value2.toString   ());

[10]: if fail.isShuffle_SortPhaseFailure ()

[11]:  jedis.get (hashKey, timestamp, key2.toString (), 

value2.toString ());

[12]: Execute reduceTask (Object Key, Text  Value)

[13]:            /*user-defined code for executing  the  reducer 

class*/

[14]: context.writeReducerOutput (key3, value3);

[15]:    write the reducer output to the HDFS as key-

value pairs

[16]: if fail.isreduceTask ()

[17]:           jedis.get (hashKey, timestamp,    key3.toString 

(), value3.toString ());

End
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• The performance of TFR in terms of execution time.

• The performance of TFR in terms of throughput and latency 

in recovering the data from Amazon ElastiCache for Redis.

We ran different benchmark programs several times on 

Hadoop, and the measurement results were averaged. Each 

experiment was repeated five times and the testbed condi-

tions were fixed to ensure the low variability and reproduc-

ibility of our results. For each data size, the WordCount, 

Sort, TeraSort, and PageRank benchmarks were executed 

five times. We calculated the coefficient of variation (CV) 

for the execution times e based on the standard deviation 

and mean,

Figure 3A shows the execution time of WordCount with 

an input size ranging from 5 GB to 25 GB in both TFR and 

Hadoop 2.6.5. With the increasing sizes of the datasets from 

5 GB to 25 GB, the execution time significantly increased 

from 150  s to 1,620  s for TFR. Table  2 summarizes the 

performance improvement rate of TFR over that of Hadoop 

2.6.5 on running WordCount. We quantified the measure-

ment of the dispersion of a set of execution times. A low 

standard deviation value indicates that the set of execution 

times measured from repeating the experiments five times 

tended to be close to the mean. Figures 3B, 4B, 5B, and 

6B show the standard deviation of Hadoop 2.6.5 and the 

execution time of TFR for the WordCount, Sort, TeraSort, 

and PageRank benchmarks. Figures 4A, 5A, and 6A show 

the performance comparison results for running the Sort, 

TeraSort, and PageRank benchmarks on Hadoop 2.6.5 and 

TFR. Tables 3, 4, and 5 summarize the performance im-

provement rate of TFR over that of Hadoop 2.6.5 on run-

ning the Sort, TeraSort and PageRank benchmarks. From 

the experiment results, we can see that the performance im-

provements varied for different benchmarks and that TFR 

performed better than the original Hadoop. Figure 7 shows 

the running time of the map, shuffle, and reduce phases 

for the WordCount, Sort, TeraSort, and PageRank bench-

marks. The execution time of the task can be tracked by 

starting the Job History Server Web UI, which contains the 

information for each job such as the total run time and the 

run time of each phase. MapReduce often faces failures 

under various conditions. TFR is executed in a controlled 

testing environment with the injection of known faults. 

Errors and exceptions are added to the TFR application 

logic to achieve the fault tolerance of the system. It is a 

fault injection technique, where the source code of Hadoop 

is modified to inject simulated faults into a system. The 

error states are observed and termed as failures.

Whenever the map output file is shuffled by the reducers, 

if there is not enough memory left, the file cannot be shuffled 

to the memory buffer and, instead, a local disk file will be 

created. If a task failure occurs, it is necessary to restart the 

failing task and recompute all the input data from scratch, 

which increases the overall execution time of the job. TFR 

allows the execution of a restarted task to continue from the 

point it was interrupted, without having to redo all the work 

from scratch. As in [1], the map output buffer size is adjusted 

to increase the performance of the MapReduce execution. 

This feature is completely avoided in TFR because of its use 

of the Amazon ElastiCache for Redis. Figure  8 shows the 

performance comparison results between TFR and Hadoop 

2.6.5 under both failure and non-failure conditions for the 

WordCount benchmark, and these were obtained by combin-

ing Algorithms 1 and 2. We observed that the execution time 

of an input job for TFR with failures was slightly higher than 

that for TFR with no failures. Hadoop 2.6.5 performed badly 

under failures and without failures.

In recent years, several techniques have been developed 

to improve the performance of the MapReduce workflow. 

Among those techniques, some are specific to a particular 

type of applications such as reduce, skew, join, combiner, 

group, and aggregate [20–23], which will introduce an extra 

overhead and a negative impact on the computing cluster. The 

MapReduce workflow in TFR runs faster under the failure 

conditions because of the faster recovery of the intermediate 

data. We observed that Redis storage is much faster than the 

main memory and hard drives.

We examined the throughput and latency of our proposed 

TFR technique in retrieving the required intermediate data 
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T A B L E  1  Hardware and software configurations

No. of Nodes 10

CPU Intel Xeon 12 cores

No. of Cores per CPU 1

No. of CPUs per node 1

Memory 16 GB

RAM DDR4

Hard drive 2 TB Seagate Barracuda

Network 2 Gigabit Ethernet NIC

Operating System Linux 5.2

JVM JDK 2.0

Hadoop Version Hadoop 2.6.5

Redis Redis 2.8.22
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from the Amazon ElastiCache for Redis through the Jedis cli-

ent API. To test this, we needed the Redis benchmark utility. 

Figure 9 shows the performance result of Redis on the GET/

SET operations. This performance was evaluated using the 

Redis benchmarking tool [24]. The SET and GET commands 

were used to store and retrieve, respectively, the intermediate 

data between the Hadoop application and Amazon ElastiCache 

for Redis through the Jedis client request. During the execu-

tions of the map and reduce phases, the results of the map and 

shuffle tasks were written to the Redis cache.

F I G U R E  3  (A) Running times of the WordCount benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation 

of Hadoop 2.6.5 and the execution time of TFR for the WordCount benchmark
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T A B L E  2  Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the WordCount benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 220 150 533 368 754 500 1276 1019 1900 1620

Standard deviation 2.88 2.19 2.86 2.30 3.24 2.19 3.033 2.07 2.58 2.19

CV (%) 1.311 1.45 0.53 0.62 0.429 0.43 0.23 0.20 0.136 0.13

Improvement rate (%) 31.82 30.96 33.69 20.14 14.74

F I G U R E  4  (A) Running times of the Sort benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation of 

Hadoop 2.6.5 and the execution time of TFR for the Sort benchmark
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F I G U R E  5  (A) Running times of the TeraSort benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation of 

Hadoop 2.6.5 and the execution time of TFR for the TeraSort benchmark
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F I G U R E  6  (A) Running times of the PageRank benchmark on Hadoop 2.6.5 and TFR. (B) Quantification measure of the standard deviation 

of Hadoop 2.6.5 and the execution time of the TFR for the PageRank benchmark

(A) (B)

T A B L E  3  Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the Sort benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 140 100 300 220 500 370 927 690 1550 1200

Standard deviation 2.09 1.09 2.79 1.78 2.70 2.28 2.30 1.94 2.86 1.67

CV (%) 1.48 1.09 0.92 0.81 0.53 0.61 0.24 0.52 0.18 0.13

Improvement rate (%) 28.57 26.67 26.00 25.57 22.58

T A B L E  4  Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the TeraSort benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 155 110 350 250 600 450 1010 780 1650 1300

Standard deviation 2.60 1.64 3.08 1.78 2.77 2.28 3.03 2.44 2.77 2.38

CV (%) 1.67 1.48 0.88 0.71 0.46 0.50 0.30 0.31 0.14 0.18

Improvement rate (%) 29.03 28.57 25.00 22.77 21.21
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7 |  CONCLUSIONS AND FUTURE 
WORK

A new task failure resiliency method has been proposed 

and implemented, which performs better than the standard 

Hadoop. The intermediate data from the map and shuffle 

phases are backed up to an in-memory data store for error 

recovery. The TFR technique is implemented on the basis 

of Hadoop 2.6.5, a popular open-source implementation of 

MapReduce. It was evaluated to determine the overhead and 

effectiveness of all features included in it. TFR outperformed 

Hadoop 2.6.5 in different scenarios including conditions with 

no failures and a diverse density of failures.

In the future, we will recover the worker node failures by 

scheduling the least reliable node to another healthier node and 

will seek further improvements to the node failure recovering 

strategy. We will also concentrate on more possible optimi-

zations to further improve the MapReduce performance and 

T A B L E  5  Performance improvement rate of TFR over that of Hadoop 2.6.5 on running the PageRank benchmark

Input

5 GB 10 GB 15 GB 20 GB 25 GB

Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR Hadoop TFR

Average execution time (s) 250 160 540 350 850 590 1,300 970 2000 1500

Standard deviation 2.68 2.19 2.40 1.78 2.60 1.94 2.77 2.16 2.86 2.19

CV (%) 1.07 1.36 0.44 0.51 0.30 0.33 0.21 0.22 0.143 0.146

Improvement rate (%) 36 35.19 30.58 25.38 25

F I G U R E  7  Running times of the map, shuffle, and reduce phases for the (A) WordCount, (B) Sort, (C) TeraSort, and (D) PageRank 

benchmarks
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reduce the impact of a possible data security breach. The weak-

ness of the data security mechanism obstructs the development 

and use of Hadoop. Hadoop and HDFS have no security model 

against storage servers. Accordingly, to make the Hadoop plat-

form more secure for enterprises, we need to propose new secu-

rity models in the future.
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