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1. Introduction

Let A denote the class of functions of the form
f@Q=z+m? + a2 +a +--, (1.1)

which are analytic in the open unit disk D = {z:| z |< 1} and normalized by f(0) = 0 and f’'(0) = 1.
Recall that, S c A is the univalent function in D = {z:| z|< 1} and has the star-like and convex
function classes as its sub-classes which their geometric conditions satisfy

2f’(2) 2”@
%(ﬂ@)>o and %0+.ﬁ@)>0’ (1.2)

respectively. The two well-known sub-classes have been used to define different subclasses of
analytical functions in different direction with different perspective and their results are too voluminous
in literature.

For two functions f and g, f is said to be subordinate to g, written as f < g, if there exists a
Schwartz function w(z) such that

f(z) = gw(2)), z€D, (1.3)



6088

where w(0) = 0 and | w(z) |< 1 for z € D.

Goodman [2] proposed the concept of conic domain to generalize convex function which generated
the first parabolic region as an image domain of analytic function. Besides, he also introduced and
studied the class UCYV of uniformly convex functions which satisfy

9%{1 +(z— l//)f,(Z)} >0, (z,y € D).
1@
Lately, Ma and Minda [8] and Rgnning[15] independently studied the underneath characterization
zf”(z)} 2f"(2)
RIT+ > , z€D. 1.4
{ o) 7o (5
Rgnning [15] also defined a class S7  as below
zf ’(z)} 2f'(2)
‘R > - 1|, zeD. (1.5
{f@ @ .
Further, we say that f of the form (1.1) is in USD, if
Rif' @} = |f'(2) - 1],z€D. (1.6)

The above characterization given in (1.4), resulted in the first parabolic region of the form
Q={w;Rw)>lw-11}, (1.7)
which was later generalized by Kanas and Wisniowska [3, 4] to
Q={w;Rw)>k|w-11},k>0. (1.8)

We note that {; represents the right half plane for k£ = 0, hyperbolic region for 0 < k < 1, parabolic
region for k = 1 and elliptic region for k > 1.

From then on, the generalized conic region (1.8) has been studied by many researchers (see [10, 12]
and also references cited therein). Moreover, the conic domain Q was generalized to domain Q[A, B],
-1 < B <A <1, by Noor and Malik [13] via

QIA, Bl ={u+iv:[(B>= D@ +v?)=2(AB- Du+ (A2 - D)?
> [-2(B+ D@? + V) +2(A + B+ 2u - 2(A + D]* + 4(A — B},

which is called petal shaped region (also see [11]).
A function p(z) € UP[A, B], if and only if

A+ Dp@) - (A-1)
B+ Dp@) —(B-1)’

p(2) < (1.9)

2
« .. N 2 1+ 4z
where “<” denotes subordination, and p = 1 + — |log .
Vs

G
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Fixing A = 1 and B = —1 in (1.9), the usual classes of functions studied by Goodman [1] and Kanas
[3, 4] can be obtained.

Furthermore, the classes UCYV[A, B] and ST [A, B] are uniformly Janowski convex and starlike
defined below:
A function f € A is said to be in the class UCV[A,B] -1 < B < A < 1, if and only if

B-b(FE) a0 () aon
— > - — s .
B+D(1+Z2)-@A+1D) |B+D(1+L2)-A+1)
or equivalently
1+ Z]]:(g) € UPIA, B).
A function f € A is said to be in the class ST[A,B], -1 < B < A < 1, if and only if
B-LL a1 |e-nLE@-1
f(@) /(@)
" B+ LD s ” B+ LD i o b
f@ f@
or equivalently
ZJJ: (S) e UP[A, B].

A function f € A is said to be in the class USD[A, B], -1 < B < A < 1, if and only if

%((B -~ D)f'(2) — (A - 1)) J|B-Df@-Aa-b (1.12)

B+Df@-A+D) IB+Df@-A+1) |

or equivalently
f'(2) € UPIA, B].

It can easily be seen that f(z) € UCVI[A, B] & zf'(z) € ST[A, B]. Setting A = 1 and B = —1in (1.10)
and (1.11), we obtained the classes of functions investigated by Goodman [2] and Rgnning [15].

The relevant connection to Fekete-Szego problem is a way of maximizing the non-linear functional
|a3 - ,ua§| for various subclasses of univalent functions. To know much more of history, we refer the
readers to [5, 7, 16]. Inspired by earlier work in [14], in this paper we study the coefficient inequalities
for certain subclasses of analytical functions related to petal type region. The first few coefficient
bounds and the relevant connection to Fekete-Szegd inequalities were obtained for the classes of
functions defined. Also note that, the results obtained here have not been in literature and the varying
of parameters involved can give rise to new or known results. For the purpose of the main results, the
following lemmas and definitions are needed.

AIMS Mathematics Volume 6, Issue 6, 6087-6106.



6090

Lemma 1.1. /1] Let P be the class of all analytic functions h(z) of the following form
h@) =1+ ) e, (z€D) (1.13)
n=1

satisfying R[h(z)] > 0 and h(0) = 1. Then | ¢, |< 2(n € N) and the result is best possible for
h(z) = 72, ol = 1.

1-pz
The next lemmas give us a majorant for the coefficients of the functions of the class £, and more
details may be found in [9]:

Lemma 1.2. [9] If h(z) € P is given by (1.13), then, for any complex p,
e — peil < 2max {1, 2 — 1]}
and the result is sharp for the functions

1+ 1+22
T o h(z)=—Z
1-1z2 1-

7
Lemma 1.3. [9] (Lemma 1 and Remark, pp. 162-163) Let h(z) € P be given by (1.13). Then

—4u+2, if u<0,
| cr —pct 1< 2, if0<puc<l,
4u -2, if u>1.

ho(z) = (z € D).

1+
When u < 0 or u > 1, the equality holds if and only if hy = I * or one of its rotations. If 0 < u < 1,
Z

2

1+
then equality holds if and only if h, = 7 < or one of its rotations. If u = 0, the equality holds if and

2
only if

I n\l+z I n\l-z
h — | = i = L j— <n<l
32) (2+2)1—z+(2 2)1+z’(0—"— )

or one of its rotations. If u = 1, then the sharp result holds for the following function
1 1 n\l1+z 1 n\l1-z
=lz+5]|—+|z—-—=z|— O0O<np<1
13(2) (2 2)1—z (2 2)1+z O<n<1

or one of its rotations. Although the above upper bound is sharp, when 0 < u < 1, it can be improved
as follows:

1
le2 = petl +plerf <2 O <ps3) (1.14)
and |
ez = pefl + (L= pleif <2, (5 <p<1). (1.15)

Definition 1.4. For 0 < A4 < 1,and -1 < B < A < 1, a function f € A is said to be in the class
NI[A4, A, B], if and only if
((B— DF (2) — (A - 1)) S B-DF-(A-1)
B+DF(@)-A+1) B+DF@-(A+1) ’

(1.16)

- oo (2 @\
or equivalently (f"(z))" ( f@) = F(z) € UPIA, B).
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Remark 1.5. We note that by fixing 4 = 0, then N[4,A, B] = ST[A,B] and A = 1, then N[1,A, B] =
USDIA, B]

Definition 1.6. For 0 < 1 < 1,and -1 < B < A < 1, a function f € A is said to be in the class
M([A, A, B], if and only if

‘R((B - DGR) - (A - 1)) J|B-DGR-@A-D |

B+1DG@)-A+1D] |B+ DG -A+1) | (1.17)

or equivalently (f'(z))* (C)
quivalently (f'(2)' (1 + %)~ = 6(2) € UPIA, B].

Remark 1.7. We note that by taking 4 = 0, then M[A,A,B] = UCYVI[A,B] and 4 = 1, then
M[A, A, Bl = USDIA, B]

Definition 1.8. For 0 < 4 < 1,and -1 < B < A < 1, a function f € A is said to be in the class
WA, A, B], if and only if

%((B— DQ(z) — (A - 1))> (B-1DQ(z) - (A-1) (1.18)

B+DQ2)-A+1)) |B+DQR)-A+1) |’

zf'(z))” (1 , U@
f@ '@

Remark 1.9. Assuming A = 0, we note that W[A, A, B] = UCV[A, B] and A = 1, then W[A, A, B] =
ST A, B]

1-1
or equivalently ( ) = Q(z) € UPIA, B].

2. Coefficient bounds and Fekete-Szego inequality

In this section, we let -1 < B < A < 1,0 < A < 1, unless otherwise stated. To prove our main
results we recall the following:
Let & € P of the form (1.13). Consider

1 +w(2)

1 -w)’

where w(z) is such that w(0) = 0 and [w(z)| < 1. Then, it follows easily that

h(z) =

_ h(z) — 1 _ C C% 2
RO v 2“(2 1)°
c3
H(F-Fte g @y

Now, if p(z) = 1 + Riz+ Ry + -+, where Ry = 5, R,

25 and Ry = ;25 (see [6]), then we have

PW(@) = 1+ Riw(z) + Ry(w(2))> + Ry(w(2))* + -+ . (2.2)

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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Hence, from (2.1) and (2.2) we get

. 4c 4 c? 4 cicy 203
pw() = 1+ ﬂ—;z+ P(”_ gl)z2+ ;(C3 = 172 + 4—51)z3 +oe (2.3)

If p € UP[A, B], from the relation (2.3), we may derive
_ A+ 1Dpwz)) -(A-1)

~ B+ D)pw(z) - (B—1)
24 A+ DAzt A+ DA - D2+

p(2)

= S ,
2+ B+ D5ciz+ B+ D5 — D2+

Thereby, it implies that

2(A-B 2(A-B 2 2(B+1)c? 8(A-B
14 XA 2A-B)( G 2B DA, 8A-B)
2 2 6 2 2
(B+1» B+1 1\, (B+1 1 a5
X( 71’4 + 67‘[2 +9—0 ) — 74‘5 C1€2+ZZ + .- (24)

Theorem 2.1. Let f € N[A,A, B] and f be of the form (1.1). Then, we have
4(A - B)

< —, 2.5
ol < G 2.5)
4(A - B) ~
las] < &7 maX {12101} (2.6)
for
6—2(B+1) QQ+D)A-D)A-B) 1
o (1 + )2n> 3
Furthermore, for a complex number u, we get
4(A — B) ~
2
las — pas| < m max{l, 2|Al}, 2.7)

where
e 2(B+1) B 2+ -2-2u)(A - B) _l

n? (1 + A)2x2 3
Proof. Assume that f € N[A, A, B]. Then, it follows from the relation (1.9) and Definition 1.4 that

zf'(z))” _ A+ DpwE) - (A -1
f@ B+ Dpw(@) - (B-1)’

where w(z) is such that w(0) = 0 and | w(z) |< 1. From (2.4) we get

(f )" (

A+Dpw(z)—(A-1) _ 2(A - B)c1Z N 2(A - B) ( C% 2(B + I)C% 2
6 2

B+pw)-B-1 = 2 \27% "

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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SA-B[(B+1? B+l 1), (B+1 1) al,
2 o o2 1 00) T\ T2 T12) T 4 |f '
If f(z) is given by (1.1), then we have
L, 1-2
(f@VFL@) — 14+ (14 Darz
f@

+ %(2 + D[2a3 — (1 = Va2l +--- .

From the comparison of coeflicients of z and z? in (2.8) and (2.9), we obtain

2(A—B)C1
D=0 0
1+ )

and

1 2(A - B) c? 2B+ 1)c?
52+ Dl2az = (1 - Daz] = ——5— (Cz - 61 — Tl)

By using (2.10) in (2.11), we get

2(A - B) 1, 2B+, Q+)(1-DA-B),
GE e | T T e T e O
2A-B
= W(Q—W’%),
where 1 2B+1) Q+A)(1-A)A-B
s 1 2B+ @+ 1-DA-B

6 ? (1 + A)%n?
In view of Lemma 1.1, from (2.10) we get

4(A - B)

< - 7
ol < T e

and by applying Lemma 1.2 to (2.12), we get
4(A - B)

|Cl3| < mmax{l,l%)—ll}
_ 4A-B) 12‘2(19“) Q2+ (1 — (A - B) 1'
T iy T e T (1 + )22 "3

so that we get the desired result in (2.5) and (2.6).
Now, for u € C, we note that

|613—,Ua§|
24-B)| o1 2B+1) 2+ =2=2)A-B)
R AR 7 (1 + )

(2.8)

2.9)

(2.10)

(2.11)

(2.12)

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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2(A-B)

2
@r e el
where
1 2B+1) Q2+ -A1-2u)(A-B)
h=—-+ - )
6 2 (1 + A)2n2

By Lemma 1.2, we get

2
las — pa;| <

4(A-B) maxd 1 2‘2(B+1) B Q2+ -2-2u)A-B) _l'
2+ Dn? ’ 2 (1 + 2)2x2 31

which yields the desired result in (2.7). O

Theorem 2.2. Let f € M[A, A, B] be of the form (1.1). Then

2(A-B
las] < T)’ (2.13)
4(A - B) ~
asl < 35 e max {125} (2.14)
for
= 2B+1) 2A-B(-1 1
R 2 3
Further, for a complex number u, we have
4(A - B) —
2
las — pas| < m max{1, 2|I1|} (2.15)

for

— 2B+l) A-B) . o .1
M=== 5 1401 =0 = 32 - D] - 2.

Proof. Suppose that f € M[A, A, B] and of the form (1.1). Then, it follows from the relation (1.9) and
Definition 1.6 that

" 1-2 -
o1 zf (z)) _ A+ Dpw()) - (A - 1),
VD ( Tr@) T B D@ - (B-1D)
where w(z) is such that w(0) = 0 and | w(z) |< 1. From (2.4) we assert that
A+ Dpw@) - (A-1 _ 1+ 2(A - B)C1Z
(B+ Dpw(z)) —(B—-1) n?
j— 2 —
+ —Z(Aﬂz B (Cz - % -~ Z(Bﬂj 1)c%) 2+ —S(Anz B (2.16)
(B+1)» B+1 1\, (B+1 1 ¢ 5
X g +67T2 +% 01—74-5 01C2+ZZ+"'
Since f is given by (1.1), we know
77 1-1
(f @) (1 + Z]’: (g)) = 1 +2axz

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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+[32 - Das —4(1 = D3] +--- .

By the comparison of coefficients of z and 7% in (2.16) and (2.17), we get

(A = B)c
="
T
of which by Lemma 1.1 gives
2(A - B)
lay| < ———,
T
and
2(A - B) 1+2(B+1) 24-B)(1-2) ,
ST 5002|672 ) ‘i
2(A - B)
—3(2 — )2 (c2 - 190%),
where
1 2B+1) 2A-B)(1-2)
9=—-+ - )
6 2 2
By Lemma 1.2, we can deduce that
4(A - B)
las] < mmax{l,mﬁ -1}
4(A - B) o 1 2‘2(B+1) 2A-B)(1 -2 1
32— T 2 2 3

which yields the desired result in (2.14).
Now, for a complex number p,

a3 - |

2(A - B) (1 2B+1) 20-)A-B) 3u(A-B)(2-2)
G e VA 2 2 + 2
32-r 6 b T 2

2(A - B) )

30— el

where

I 2B+ _(A-B)
2 22

[4(1 — ) —3u2 - 2)].

Hence, by means of Lemma 1.2 we get the desired result (2.15).
Theorem 2.3. If the function f € WA, A, B] is of the form (1.1),then

4(A - B)

2 - Dn?’
2(A - B)
(3 -2)n2

lay| <

las| < max{1, 2|®|}

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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for

2 (2 = A)2n? 3
Moreover, for a complex number u, we obtain
2(A - B)

las — pd?| < G20 max{1,2|'¥]} (2.22)

— 2 -
5:2(B+1)+(A B)(A” + 54 8 1

for
2B+ 1) N (A= B)[A* + 51— 8 +4(3 —2)u] 1

2 (2 = )2n? 3
Proof. Let f € ‘W[A, A, B]. Then, applying the relation (1.9) and Definition 1.8 we have

]l

' @) ( zf"(z))” A+ DpwE) = (A= 1)
1 = , 2.23
( @ ) o) T B DR - (B-1D) 223
where w(z) is such that w(0) = 0 and [w(z)| < 1. From (2.4) we get
A+ Dpw@) -(A-1 _ 1+ 2(A - B)C1Z
(B+ Dpw(z)) —(B—-1) n? (2.24)
2(A - B) i 2B+, '
L (CZ_E_T)Z "
In view of (1.1), we obtain
(@) Zf”(z))H B _
( @ ) (1 + o =1+Q2-Daz (2.25)
+ (23 - 2)a; + %(12 +51-8)a5 | + -
By the comparison of coefficients of z and z? in (2.24) and (2.25), we get
_ 2(A-B)c,
a, = e (2.26)
and )
1 2(A-B c 2(B+1
23 = 2)as + (A + 51~ 8)a; = ( - )(c2 - ( = )c%).
Then, by (2.26),
3 1 [2(A—B) _C_%_2(B+1)2 _2(A—B)2[/12+5/l—8]2
GBIl 2 (-3 ) 2 - e “1 027
_ (A-B) [ _ 2(1+2(B+1)+(A—B)(/12+5/1—8))] '
TGo2el? TN T T e 2 - )n? '

Following the procedure as in the above theorems, we can get the desired results given by (2.20) and
(2.21).

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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Now, for a complex number g,

las — ya%|
(A-B) [ 2(1+2(B+1)+(A—B)[/12+5/l—8+4,u(3—2/l)])]
— C — —
G-220z2? N6 2 2 - Apn?
(A-B)
G-2pe Al
where
¢ = 1+ 2(B+1) N (A= B)[A* + 51— 8 + 4u(3 — 22)]
6 2 (2 - )n? ‘
Therefore, in light of Lemmas 1.1 and 1.2 we get the desired result (2.22). O

If we choose real u, then by Lemma 1.3 we derive the next results for Fekete-Szeg6 problem for
these classes above.

Theorem 2.4. If the function f € N|[A, A, B] be of the form (1.1), and u € R then

$(A-B) {_2(B+1) 4 CrVa-A-3A-B) 1}, (u <Y

e A T2 3
jas — pa3] <4 2EEH, (11 < p < 1o);
8(A-B) [2(B+1)  Q+D)(1-1-2u)(A-B) 1
Q+ )2 { n; - (1+/l)27l:2 - 5} s (1= T),
where
S S [Z +2(B+ DI(1 + 2)°
b2 22+ (A - B)
and
. -1 [FZ+2B+ DI+ >
2 T T T T 22+ 0A-B)
Moreover, we set
. -1 [-Z+2B+ DI +2)?
3 = p—

2 22+ A)(A-B)
Then, each of the following results holds:
(A) For p € [y, T3],
(1+ )N + 1) oo 4(A - B)
W|" s /5>
20+ D)A-B) " T2+ n2

las — ,ua%l +
(B) For p € [Y3,Y2],

(1 + )22 (=A + %)I o< 4(A - B)
22+ DA-B) " S 2r o

2
laz — pas| +

where
2(B+1) B Q2+ )1 -2-2u)A - B) _l

A= .
2 (1 + 2)2n2 3

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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Proof. If f € N[A, A, B] is given by (1.1), based on the proof of Theorem 2.1 we see

, 2(A-B)

e hcil, (2.28)

as —ua

where

. l+ 2B+1) 2+H(1-A1-2u)(A-B)
6 n? (1 + 2)%x?
For i € R, we know that 72 > 1 is equivalent to 4 > T, and 7 < 0 is equivalent to u < ;. Therefore,
taking the modulus on both sides of the above equality, with the aid of the inequality in Lemma 1.3 we
obtain the first estimates of Theorem 2.4.
For the proof of the second part, note that 0 < 7 < 1/2 is equivalent to T; < u < V’3. By using the
relations (2.28) and (2.10) , and then by applying the inequality (1.14) of Lemma 1.3, we get

Gy L2 el Hel] =las = pait+ sl
(1+ )% (A + 1) 4(A - B)
e 2 2 2 o
a3 = il S A =B P S G e

such that the required inequality (A) holds.
Similarly, we can easily check that 1/2 < i < 1 is equivalent to T3 < u < T,. From the relations
(2.28) and (2.10), and the inequality (1.15) of Lemma 1.3 we obtain

2(A-B) 2(A - B)(1 —h)
2+ [|C2 —hctl+ (1 - h)|cf|] = laz — pas| + S lc3|
(1+ ) (-A + 1) 4(A - B)
_ _ 2 2 2
= las — ua;y| + 0+ VA-B) las| < o

which is exactly the inequality (B).
To show that the bounds are sharp, we define the functions K, (n = 2,3,...) with K, (0) = 0 =
[K,,1(0) — 1, by

2(A+1)( 1+ \/z”_‘l]z
+ log

2
K/ 1-2 B N
(K;':,,(Z))‘(—Z p"(Z)) =pE = - v
Ky, () L 2B, T+ Ve
+ 7'[2 Ogl ~ \/Z”__l

where p(z) is as given in (1.9). Also, define the functions F,, and G,,, 0 < n < 1, respectively, with
F,(0)=0=F}(0) - 1 and G,(0) = 0 = G;(0) — 1 by

(F (2! (@)H _, (z(z ¥ n))
n

Fy(2) 1+nz
and 6 -
T AN <R )
(G,(2) (Gn(z)) —p( T2 )

AIMS Mathematics Volume 6, Issue 6, 6087-6106.
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Clearly,

1
2 A1, m—1 1 )
k(o= (LR e hal . ifo<as,
eXp {fo p(t"‘l)%}, if 1=0.
Hence, K,,,, F,,, G, € N4, A, B]. Also, we write

1
1

Ky, (2) == [ﬂfo ti_lp(?[df]/ ; %f 0<aA<1,
exp{ [ p(H<}, if 1=0.

If u < Ty or u > Yy, then the equality holds if and only if f is K,,(z) or one of its rotations. When
T) < p < Yo, then the equality holds if and only if f is K, (z) satisfying

K, (7) := [/lfoz I’Hp(tz)dt]%, if 0<aA<1,
T exp{f 2], if 1=0

or one of its rotations. If u = ', then the equality holds if and only if f is F,, or one of its rotations. If
1 = T, then the equality holds if and only if f is G, or one of its rotations. i

As it is similar to the above result in Theorem 2.4, we state the following results without proof.

Theorem 2.5. If the function f € M[A, A, B] is of the form (1.1) and u € R, then

8(A-B) {_2(B+1) + [4(1-)-3u(2—)](A-B) + l} ('u <r1)_
3 2 —_ 2

3&25/1?2 2 272
las — pa;| < 3(2_;),32, (I < p <Ty);
3{25:51)2 {2(173;;1) _ [4(1—/1)—3/21;22—/1)](14—3) _ %} , (/J > Fz),
where
Lo M- A5 +2B+ D)
! 32-1) 32-A)(A-B)
and
L. - A 2B D)
2 32-1) 32-A)A-B)
Further, we set
Lo M- 2A-F +2B+ D)
) _

32-0)  32-)A-B)

Then, each of the following results holds:
(A) For p € [I'y, T3],

2r¥(M+3) . 4A-B)
D" < —;
3(2 - A)(A - B) 32 — D)n?

2
laz — /Jazl +
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(B) For p € [I'3,17],

2A(-TI+1) . 4A-B
32-D)A-B) " 3202

2
las — pas| +

where

=

2B+ @A-B o ]
=== eal LUBPIRETCEPIEES

Theorem 2.6. Let u € R. If f € A is assumed to be in W[A, A, B], then

—_ 2 _ — —
AA-B) {_2(3+1) _ [P450-8+4uG-2DNA-B) %} (1 < Ny);

(3 _A2 /lgrz ) (2-2)272
las — pad] <3 35, (N1 < p < Np);
— 2 — — —
o (| WS Y s,
where
« _ _Lrsi-s [ +2(B+ D2 - A)?
! 4(3 = 2) 43 -20)(A - B)
and
o | _Arsi-8 [-35 +2(B + ]2 - 1)
2T aG-w 43 -20(A - B)
Besides, we let
< 2+51-8 [—%2+2(B+1)](2_/1)2
3= N ’

T 43 -2)) 4(3 = 21)(A — B)

Then, each of the following results holds:
(A) For p € [Ny, N3],

2 - 2P + %)l o< 2(A-B)
A3-20A-B) Y T ar o

2
las — pas| +

(B) For ji € [N3, 8],

2 - (- + 1 -
( ) m( +2)|a2|2S2(A B)

— 2 —
a5 = kel S A = B) 2+ r

where
3 2(B+1) N (A—B)[/12+5/1—8+4u(3—2/l)] _l
o (2 — )2°n2 3

a1
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3. The logarithmic coefficients

In this section we determine the coefficient bounds and Fekete-Szego problems associated with
logarithmic function H(z) defined by

H(z) = log @ =2>"d.2, (3.1)
n=1

where the coefficient d, of H(z) is called the logarithmic coefficient of f € A defined in D. Expanding
(3.1) by series expansion of log(1 + z) and equating the various coefficients, we assert that
ap

dy = 5 (3.2)
1 a;
dy =5 (a3 - 32) (3.3)
Theorem 3.1. Let f € N[A, A, B] with the logarithmic coefficients in (3.1), and v € C. Then
2(A - B)
d| £ ——, 34
4l < (3.4)
2(A - B)
d) £ —— 1,210 35
Izl_(2+/l)ﬂ2max{ 1O} (3.5)
for
® 2(B+1) N A2+ DA-B) 1
o (1 + 2)2n> 3’
and 2A - B)
) _
ldy, — vdi| < m max {1,2|A[} (3.6)
for
2B+1) QQ+AD)UA+v)A-B) 1
A= + - —.
2 (1 + A)2x2 3
Proof. From (2.10) and (2.12), and (3.2) and (3.3) we get
(A - B)c,
d; —_—,
(1 + D)n?
(A-B) 1 2B+1) A2+HA-B))\ ,
d = ——=|c-|-= .
2T 2ran [62 (6 T T a9
Furthermore, we have
(A-B) 1 2B+1) A2+HA-B))\ ,
d, —vd* — |- |-
2TV T e [CQ (6 T T Tt )9
(A-B))\' _ (A-B) )
- = - , 3.7
V((1+/1)7r2) 2+ )2 [e2 = pei] 37
where
1 2B+1) Q+ADA+v)A-B)
=—+ +
6 2 (1 + A)2n2
In view of Lemmas 1.1 and 1.2, we get the desired results such that Theorem 3.1 holds true. O
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Theorem 3.2. Let f € M[A, A, B] with the logarithmic coefficients in (3.1), and v € C. Then

A-B
i < 2=, (3.8)
T
2(A - B)
d| £ ——= 1,212 3.
|2|‘3(2—/1)7r2maX{ . 21=]} (3.9)
for
— _2(B+1) N BGa-2)A-B) 1
R 472 3’
and 24— B)
) _
|d2—Vd1| < mmax{lﬂll_ﬂ} (310)
for
2(B+1) [54+3v2-A1)-2](A-B) 1
I1= + - —.
m? 42
Proof. According to (2.18), (2.19), (3.2) and (3.3) we get
_ (A - B)Cl
d = 2n2
(A-B) 1 2B+1) (G(41-2)(A-B))\ ,
% %2—@#[Q_(8+ 2 4 )q'
Further, we have
) (A-B) 1 2B+1) (GaA-2)(A-DB)) ,
o = vd; 3(2-;un2[cz"(8'+ 2 an “
A-BYci  (A-B >
- = 3(2__2)”2[c2_.QcJ, (3.11)

where

6 2 472

L, 2B+1)  [51+3v2-2)-2)(A-B)

Applying Lemmas 1.2 and 1.1, we obtain the desire estimates and complete the proof of Theorem

3.2.

O

Theorem 3.3. Let f € WA, A, B] with the logarithmic coefficients in (3.1), and v € C. Then

2(A-B
af s 24D
2-r
(A-B)
d| < ——— 1,2|®
bl < =y max (1,210
for
2B+1) A-DA+2)A-B) 1
O = + - =,
2 (2 — A)2n2 3
AIMS Mathematics
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and A B)
) -
|d, — vd;| < G—T)ﬂ'z max {1,2 [} (3.14)
for
W - 2(B+1) N [(A-DA+2)+2v3-2DI(A-B) 1
o (2 — 1)2n2 3
Proof. From (2.26) and (2.27), and (3.2) and (3.3) we derive
d (A = B)cy
: Q- r2’
J (A-B) o — l+2(B+1)+(/l—1)(/1+2)(A—B) 5
P22 | 6T R Q- Pr -
Therefore, we obtain
(A-B) 1 2(B+1) (A-DA+2)A-B)
dy — vd? —— || 2
27V 2@—2@%[” (6+ 2 e-m )J
V(A — B)*¢? (A-B) 2
= - , 3.15
Q2= ZG—MMJQ i ©-15)
where
1 2B+1) [A-1DA+2)+2v(3-20)](A-B)
=—+ + .
6 2 (2 — 2)2n?
By applying Lemmas 1.1 and 1.2, we get the desired results, which prove Theorem 3.3. m|

If we consider real v, then by Lemma 1.3 we provide the several results for Fekete-Szegd problem
with respect to the logarithmic coefficients.

Theorem 3.4. Let v € R. If f € N[A, A, B] with the logarithmic coefficients is of the form (3.1), then

4(A-B) {_2(B+1) _ @ED@A-B) | 1 } v < ?1),

(222%2 _ __(1+)*n? 3
2 — .
ldy —vdi| < { F558, (T < v < To);
4A-B) [2(B+]) | Q+DA+WA-B) 1 =

@+ { n? (1+2)2n2 - §} , (v=2T),

where
5 2B DI+ A7

b 2+ V(A - B)

and

_ [-3 +2(B + DI(1 + 2)?
- - 2+ A)(A - B)

Moreover, we put

_ [-Z +2(B+ DI(1 + )°
- B (2 + A)(A - B)
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Then, each of the following results holds:
(i) Forv € [, T3],

(1+ 1A+ 3) i < 2(A-B)

—_ 2 AN . N
|d2 Vd1|+ (2+/l)(A—B) 1 (2+/l) 2’
(ii) For v € [ T3, 1],

(L+ ) (-A+ D) <2(A—B)
2+ A)(A - B) 2+ D)n?’

|dy = vdi| +

where
2B+1) Q2+0DA+v(A-B) 1
A= + - -
2 (1 + 2)2r2 3

Theorem 3.5. Let v € R. If f € M[A, A, B] with the logarithmic coefficients is of the form (3.1), then

4(A-B) { 2B+D) _ [S+3v(2-)-20A-B) | } (v < Fl)

32— )2 2 472
dy = vdi| < { 722, (T) < v <)
;:gi;f?z {Z(i}r;—l) + [5/1)+3v(24;12)—2](A—B) _ %} , (V > F2),
where
= _ _5i-2 4 +2B+D)
T U32-1) 32-A)(A-B)
and
_ 50-2  A[-Z 4+ 2B+ 1)
Fz =

"32-1) 32-A1)A-B)

Moreover, we put

-~ 51-2 4-F+2B+1)]
32-1)  32-)A-B)

3

Then, each of the following results holds:
(i) Forv e [I'1,T3],

4 (I + 3) 2(A - B)

d> — v “a-5) .
& =vdil+ A i< S32-r

(i) For v € T3, T3],

4m* (-1 + 1) ap < 2(A - B)

dy — vd 2870
> V1|+3(2—/l)(A—B) =30

where
2B+1) [54+3v2-A)-2]A-B) 1
IT = + - -
2 452 3
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Theorem 3.6. Let v € R. If f € WI[A, A, B] with the logarithmic coefficients is of the form (3.1), then

2(A-B) 2(B+1)  [(A+DA+2)+2v(3-2D1(A-B) , 1 SN,
(3;‘2/2”2 {_~ P -2 + 5} , (VSN
ldy —vd}] <{ i, (N1 < v < Ny);
2(A=B) [2(B+]) | [(A+DA+2)+2v(3-2D1(A-B) 1 S
(3-2)n { 2 T (2-2)272 -3 } , (V2 Ny),
where
= A+DA+2) [E+2B+DI2- 27
ST YY 23 -20(A - B)
and

= (P+DU+2) [FZ 2B+ DI - 2P
T 23-21)  2(3-21)(A-B)

Moreover, we let

S L _@aha+y [FH2AB+ DA
T 23 -21) 2(3 - 21)(A - B)

Then, each of the following results holds:
(i) For p € [Ny, R3],

Q2 - DY+ 1 (A - B)
2 2 2 .
L=l 3 a - N = G2oe
(ii) For v € [N3, No],
vy ¢ VTV D) AB)
S TCR PV I R E R F%2k

where
_ 2B+ 1) N [(A=1DA+2)+2v(3-2)](A - B) B l

v .
2 (2 = )2n? 3

Concluding Remark: By fixing A = 1and B=—-1o0orA =1and B = 1 - 2a, one can deduce some
interesting results .
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