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SUMMARY

Centrioles are microtubule-based structures that

play important roles notably in cell division and

cilium biogenesis. CEP135/Bld10p family members

are evolutionarily conserved microtubule-binding

proteins important for centriole formation. Here, we

analyzed in detail the microtubule-binding activity

of humanCEP135 (HsCEP135). X-ray crystallography

and small-angle X-ray scattering in combination with

molecular modeling revealed that the 158 N-terminal

residues of HsCEP135 (HsCEP135-N) form a paral-

lel two-stranded coiled-coil structure. Biochemical,

cryo-electron, and fluorescence microscopy ana-

lyses revealed that in vitro HsCEP135-N interacts

with tubulin, protofilaments, and microtubules and

induces the formation of microtubule bundles. We

further identified a 13 amino acid segment spanning

residues 96–108, which represents a major micro-

tubule-binding site in HsCEP135-N. Within this

segment, we identified a cluster of three lysine resi-

dues that contribute to the microtubule bundling ac-

tivity of HsCEP135-N. Our results provide the first

structural information on CEP135/Bld10p proteins

and offer insights into their microtubule-binding

mechanism.

INTRODUCTION

The centriole and the related basal body are organelles that are

essential for the formation of the centrosome, the major microtu-

bule organizing center in animal cells, as well as of the axoneme

in cilia and flagella (reviewed in Bornens, 2012). Due to their func-

tional importance, alterations in centriole structure or function

are linked to severe human diseases, including several forms

of ciliopathy and cancer (reviewed in Bettencourt-Dias and Hil-

debrandt, 2011; Nigg and Raff, 2009). Centrioles are typically

constructed around a 9-fold symmetric ‘‘cartwheel’’ structure

consisting of a central hub from which nine spokes emanate.

An electron-dense region called the ‘‘pinhead’’ connects each

of these spokes to a microtubule multiplet, which collectively

form the microtubule wall of the centriole (Guichard et al.,

2013). Despite important progress in recent years, the mecha-

nisms that govern formation of the remarkable and evolutionarily

conserved architecture of centrioles remain elusive, owing

in part to a paucity of structural information of participating

components.

Several players important for promoting centriole assembly

and stability have been identified over the last decade in different

organisms (reviewed in Azimzadeh and Marshall, 2010; Gönczy,

2012; Hirono, 2014). Among them, the essential cartwheel pro-

tein SAS-6 was one of the first to have been studied in great

detail; structural and biophysical data revealed that the self-as-

sembly properties of SAS-6 proteins establish the central hub

and a large part of the spokes of the cartwheel and are thus

key in determining the 9-fold symmetry of centrioles (Van Breu-

gel et al., 2011; Kitagawa et al., 2011). Another evolutionarily

conserved and important centriolar protein is CEP135/Bld10p

(Ohta et al., 2002; Ryu et al., 2000), which plays a critical role

for proper centriole formation in Chlamydomonas reinhardtii,

Paramecium tetraurelia, and Tetrahymena thermophilia. Deple-

tion phenotypes in these unicellular organisms range from a

complete loss of centrioles in Chlamydomonas to defects in

centriole assembly and SAS-6 maintenance in Paramecium or

loss of centriolar microtubules in Tetrahymena (Bayless et al.,

2012; Hiraki et al., 2007; Jerka-Dziadosz et al., 2010; Matsuura

et al., 2004). InDrosophila melanogaster, CEP135/Bld10p deple-

tion leads to shortened centrioles and to an increase in centriole

diameter (Mottier-pavie and Megraw, 2009; Roque et al., 2012).

Furthermore, Drosophila CEP135/Bld10p is critical for assembly

of the central microtubule pair of the sperm axoneme (Carvalho-

Santos et al., 2012) and plays an important role for asymmetric

cell division of neuroblasts (Singh et al., 2014). In the case of

chordates, the reported CEP135/Bld10p depletion phenotypes

vary somewhat. In DT40 chicken cells, for example, only weak

alterations in centriole numbers were observed on CEP135/

Bld10p gene disruption (Lalor et al., 2013). By contrast, primary

fibroblasts derived from patients suffering from microcephaly

due to a premature termination codon in the human CEP135/

Bld10p gene display aberrations in centrosome numbers (Hus-

sain et al., 2012). Furthermore, small interfering RNA-mediated
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depletion of CEP135/Bld10p in human cultured cells causes a

loss of centriolar microtubules, as well as a reduction in centriole

length (Lin et al., 2013; Dahl et al., 2015), reminiscent of the

phenotype obtained inDrosophila. Together, these observations

suggest that CEP135/Bld10p plays an important role in promot-

ing centriole assembly and stability, although its exact mode of

action appears to differ somewhat depending on the species.

Immunofluorescence and electron microscopy (EM) studies

ascertained that human CEP135/Bld10p localizes principally to

the proximal lumen of the parental centriole and to a lesser

extent to the lumen of the growing procentriole (Kleylein-Sohn

et al., 2007; Sonnen et al., 2012). On the other hand, work

in Chlamydomonas and Paramecium revealed the presence of

CEP135/Bld10p at the cartwheel-microtubule connection in

the proximal part of centrioles (Hiraki et al., 2007; Jerka-Dzia-

dosz et al., 2010; Matsuura et al., 2004). Interestingly, a micro-

tubule-binding site has been mapped to the N-terminal part

of human (segment 1–190) and Drosophila (segment 1–163)

CEP135/Bld10p (Carvalho-Santos et al., 2012; Lin et al., 2013).

Collectively, these studies suggest that CEP135/Bld10p proteins

stabilize centrioles by interacting with their cartwheels and/or

with their microtubule walls.

In this study we sought to investigate in detail the microtubule-

binding site of human CEP135/Bld10p (denoted HsCEP135 from

here onwards). Based on X-ray crystallography, small-angle

X-ray scattering (SAXS), and molecular modeling, we produced

an atomic model for the N-terminal domain of HsCEP135

(HsCEP135-N). We further defined a major microtubule-binding

site in this domain using biochemical, cryo-EM, and fluores-

cencemicroscopy experiments and pinpointed by rational muta-

genesis three lysine residues that contribute to the microtubule

bundling activity of HsCEP135-N. Our results represent the

first high-resolution structural information on a CEP135/Bld10p

family member and provide insights into how HsCEP135 inter-

acts with microtubules.

RESULTS AND DISCUSSION

Biophysical and Functional Characterization of the

N-Terminal Domain of HsCEP135

Bioinformatic analyses suggested that HsCEP135 is extensively

helical and contains several long regions that are predicted to

form coiled-coil structures (Figure 1A) (Carvalho-Santos et al.,

2010; Matsuura et al., 2004). A multiple sequence alignment

of CEP135 orthologs revealed an �160 N-terminal sequence

stretch that coincides with a predicted structured region (Car-

valho-Santos et al., 2010). In human and fly proteins, this region

of CEP135 has been shown to contain amicrotubule-binding site

(Carvalho-Santos et al., 2012; Lin et al., 2013). Overall, these

observations suggest that the first �160 N-terminal residues of

CEP135 family members form an evolutionarily conserved func-

tional domain that binds microtubules.

To biophysically characterize the N-terminal domain of

HsCEP135, we recombinantly expressed and purified the first

158 residues of the protein (denoted HsCEP135-N; Figure 1A).

The secondary structure and thermal stability of HsCEP135-N

in solution was assessed by circular dichroism (CD) spectros-

copy. As shown in Figure 1B, the far-UV CD spectrum from

HsCEP135-N recorded at 4�C was typical for an a-helical

coiled-coil structure exhibiting minima at 208 and 222 nm

and a [Q]222:[Q]208 ratio of >1 (Zhou et al., 1992). Thermal un-

folding experiments recorded by CD at 222 nm and at an

HsCEP135-N concentration of 10 mM revealed a sigmoidal-

shaped profile characteristic of a cooperatively folded protein

with a midpoint of the transition, Tm, centered at 56�C (Fig-

ure 1C; Table 1). The oligomerization state of HsCEP135-N

was assessed by size-exclusion chromatography followed by

multi-angle light scattering (SEC-MALS). A molecular mass of

42 kDa was obtained, consistent with the formation of a homo-

dimer (calculated molecular mass of the monomer: 18.7 kDa;

Figure 1D; Table 1).

The microtubule-binding activity of HsCEP135-N was tested

by a standard microtubule pelleting assay (Campbell and Slep,

2011). As shown in Figure 1E, while HsCEP135-N did not pellet

on its own, it did so in the presence of microtubules, consistent

with previous results (Lin et al., 2013). Inspection by cryo-EM of

microtubules incubated with HsCEP135-N revealed that the pro-

tein decorated microtubules (Figures 2A and 2B), indicating that

the interaction between CEP135-N and microtubules is specific.

Cryo-tomographic reconstructions of such samples suggested

that the decoration most likely reflected the presence of pro-

tofilament-based rings and/or spirals that wrap around the

microtubule shaft (Figures S1A and S1B). Consistent with this

hypothesis, analysis of tomograms revealed a pronounced

density with a periodicity of �8 nm along the long axis of the

microtubule, whichmatches the spacing between tubulin dimers

(Figures 2C and 2D). We further observed that, besides deco-

rating microtubules, HsCEP135-N can also induce the formation

of protofilament-based ring-like structures in the presence of

soluble tubulin (Figures S1C–S1E). Interestingly, when tubulin

was co-polymerized together with HsCEP135-N, we observed

microtubules that were occasionally bridged with either individ-

ual straight protofilaments (Figure 2E) or with other microtubules

(Figures 2F and 2G).

Collectively, these results suggest that HsCEP135-N forms a

very stable two-stranded coiled-coil structure. They further indi-

cate that in vitro, HsCEP135-N binds directly to tubulin, protofila-

ments, and microtubules and has the capacity to bridge such

higher-order assemblies. Protofilament-based ring-like oligo-

mers either in isolation or wrapped around microtubules are

frequently obtained in the presence of divalent cations or of iso-

lated domains from microtubule-associated proteins (Tan et al.,

2006; Wang et al., 2014) and are typically associated with a

microtubule depolymerization activity (Mandelkow et al., 1991;

Desai et al., 1999); however, we did not find any indication that

HsCEP135-N destabilizes microtubules (Figures 2A and 2B,

see also below). Whether these protofilament-based ring-like

oligomers are also formed in the presence of the full-length

HsCEP135 protein and whether they are of any functional rele-

vance remains to be determined.

Structural Model of HsCEP135-N

To provide a structural basis for understanding the interaction

of HsCEP135-N with microtubules, we analyzed its structure

by X-ray crystallography and in solution by SAXS. Crystallization

of HsCEP135-N and the corresponding domain from the Chla-

mydomonas ortholog CrBld10p were not successful. However,

after extensive fragment screening, we solved the structures of
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CrBld10p-N 1–70 and HsCEP135-N 82–144 to 2.2 and 1.8 Å

resolution, respectively (Table 2).

As shown in Figure 3A, the crystal obtained with CrBld10p-N

1–70 revealed four monomers in the asymmetric unit, which

are organized into two individual dimers. The �20 N-terminal

residues of each monomer form short a helices that assume

different orientations, presumably as a result of crystal contacts

(Figure S2A). Residues�35–60 form a two-stranded parallel and

in register coiled-coil structure, where hydrophobic heptad a and

d core residues pack in a characteristic ‘‘knobs-into-holes’’

fashion (Walshaw and Woolfson, 2001). The N-terminal and

coiled-coil helices are connected by a �5–10 amino-acid-long

linker region. The dimeric and cooperatively folded helical nature

of CrBld10p-N 1–70 was confirmed by CD and SEC-MALS (Fig-

ures S4A and S4B; Table 1). To obtain structural information on

the N-terminal residues of CrBld10p-N 1–70 in solution, we re-

corded SAXS data (Figure 4A). The calculated pair distribution

function (representing a distribution function of inter atomic dis-

tances) revealed a distinct peak centered at 20 Å and amaximum

particle distance, Dmax, of 86 Å (Figures 4B and S3A; Table 3),

in good agreement with the thickness (22 Å) and elongated

nature of a two-stranded coiled-coil structure. Notably, the
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Figure 1. Characterization of HsCEP135-N

(A) Top: coiled-coil (black and gray bars) and secondary structure (white cylinders) prediction of HsCEP135. Black and gray boxes highlight regions with 80%–

100% and <80% coiled-coil probability, respectively. White cylinders depict predicted a-helical regions. Bottom: schematic representation of protein fragments

used in this study. The dashed box highlights the N-terminal domain of HsCEP135. The gray vertical bar highlights segment 96–108, which is crucial for

microtubule binding of HsCEP135-N.

(B and C) Spectra (B) and thermal unfolding profile (C) recorded by CD fromHsCEP135-N (10 mM). The spectra and the unfolding profile were obtained at 4�C and

at 222 nm, respectively. See also Table 1. Symbols and the line in (C) represent data points and the spline fit to the data, respectively.

(D) SEC-MALS experiment obtained by injecting 100 ml of a 200 mM HsCEP135-N protein solution.

(E) Microtubule pelleting assay for HsCEP135-N and representative controls. Shown are relevant areas of Coomassie-stained SDS-PAGE gels corresponding to

the proteins of interest. S, supernatant; P, pellet; MT, microtubule.
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experimentally determined pair distribution function did not

match any of the ones calculated from the homo-dimeric config-

urations modeled from the four monomer structures present in

the asymmetric unit of the crystal (Figures 3A and 4B), suggest-

ing that the �30 N-terminal residues of CrBld10p-N 1–70 are

indeed largely disordered in solution. This conclusion is further

supported by the corresponding ab initio calculated envelope

and Kratky plot that displays a significant increase in I 3 q2 at

higher q values (Figures S3B and S3C), characteristic of proteins

containing disordered regions (Putnam et al., 2007).

HsCEP135-N 82–144 resulted in crystals with two monomers

in the asymmetric unit. The monomers formed a two-stranded

parallel and in register coiled-coil structure (Figure 3B), consis-

tent with the CD analysis of HsCEP135-N 82–144 in solution at

4�C (Figure S2B). Knobs-into-holes packing was observed for

heptad a and d core residues spanning segment �80–130.

Notably, Cys110 at a heptad d core position of HsCEP135-N

82–144 forms a disulfide bridge with Cys1100 from the neigh-

boring chain (Figure 3B).

Next, we analyzed His-HsCEP135-N by SAXS (Figure 4C). As

shown in Figure 4D, the corresponding calculated distance dis-

tribution function revealed a similarly distinct peak centered at

24 Å as obtained for CrBld10p-N 1–70, in agreement with the

approximate thickness of a two-stranded coiled-coil structure.

It further suggested the presence of a highly elongated molecule

with a Dmax of 213 Å (Table 3). In line with this conclusion, the cor-

responding Kratky plot and the ab initio calculated envelope indi-

cate a predominantly elongated and folded protein (Figures S3D

and S3E). However, the course of the Kratky plot in the high q

range indicates the presence of some disorder; based on our

data obtained CrBld10p-N 1–70, we attributed this disorder to

the N-terminal residues of the protein. The molecular masses

derived from the SAXS data using the Rambo-Tainer method

(Rambo and Tainer, 2013) and from the volume of the molecular

SAXS envelope amounts to 40 and 54 kDa, respectively, in good

agreement with the calculated molecular mass for the His-

HsCEP135-N dimer (40.6 kDa; Table 3).

In order to generate a full atomic model of HsCEP135-N, we

performed homology modeling followed by molecular dynamics

simulations using the crystal structures of CrBld10p-N 1–70

(42% and 53% sequence identity and similarity, respectively,

to HsCEP135-N 1–70) and HsCEP135-N 82–144 as a basis

(Figure 5A). Consistent with the SAXS data, the resulting

HsCEP135-N model shows an extended homo-dimeric coiled-

coil structure�1903�25 Å insize (Figure 5B).The theoreticaldis-

tance distribution function calculated from the model shows a

similar peak andDmaxas thedistancedistribution functionderived

from the His-HsCEP135-N SAXS data with a goodness of fit (c)

measure of 1.21 (Figures 5C and S3F). The fit is particularly

good in the lowq range that contains the general molecular shape

information and deviates in the high q region that contains more

detailed feature information (Putnam et al., 2007). Notably, the

HsCEP135-Nmodel showsa bend that is causedby aproline res-

idue in the sequence (Pro70). A bend at the corresponding posi-

tion is also observed in the ab initio envelope generated from

the SAXS data (Figures 5B and 5D) and is supported by the fact

that prolines can introduce kinks in coiled-coil structures (Chang

et al., 1999). The overall conformation of the model fits well into

the SAXS envelope and matches the observed SAXS scattering

data obtained from His-HsCEP135-N (Figures 5C, 5D, and S3F).

Further analysis of the HsCEP135-N atomicmodel revealed three

patches along the coiled coil (denoted 1, 2, and 3), which display

strikingly high positive electrostatic surface potentials (Figure 5E).

Collectively, our biophysical and structural data suggest

that the predominantly positively charged N-terminal domain of

HsCEP135 forms an extended two-stranded coiled-coil struc-

ture with chains arranged in parallel and in register. They further

indicate that the first �25–30 N-terminal residues of HsCEP135

are largely disordered in solution and adopt an ensemble of

different conformations.

Table 1. Biophysical Characterization and Microtubule-Binding Activity of CEP135/Bld10p Fragments

Protein Construct Tm
a (�C)

Calculated

MWb (kDa)

Determined

MWc (kDa)

Oligomerization

State

MT-Binding

Activityd

HsCEP135 1–158 56 18.67 43 dimer +

HsCEP135 1–70 58 8.24 14.2 dimer –

HsCEP135 1–108 43 12.88 28.8 dimer +

HsCEP135 1–97 42 11.59 22.4 dimer –

HsCEP135 68–158 39 10.93 22 dimer +

HsCEP135 96-158 r. – 7.44 7.2 monomer ND

HsCEP135 96-158 n.r. 57 7.44 12.2 dimer +

HsCEP135 1-158 K101,104,108A 37 18.50 41.9 dimer +/�

HsCEP135 1-108 K101,104,108A 42 12.71 24.7 dimer +/�

HsCEP135 68-158 K101,104,108A 24 10.75 23.2 dimer +/�

HsCEP135 96-158 K101,104,108A n.r. 44 7.27 14.5 dimer –

CrBld10 1–70 30 7.95 14.2 dimer –

MW, molecular weight; MT, microtubule; ND, not determined; r., experiment performed under reducing buffer conditions; n.r., experiment performed

under non-reducing buffer conditions.
aDetermined by far-UV CD.
bBased on primary amino acid sequence.
cDetermined by SEC-MALS.
dDetermined by MT-pelleting assays.
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Identification and Characterization of a Microtubule-

Binding Site in HsCEP135-N

We set out to narrow down the microtubule-binding region in

HsCEP135-N. For this purpose, we generated several N- or

C-terminal truncations and recombinantly expressed and puri-

fied the resulting fragments (Figure 1A). The structural integrity

of the various fragments was assessed by CD and SEC-MALS.

As shown in Figure S4 and summarized in Table 1, like

the full-length HsCEP135-N domain, most of the fragments

thereof formed dimeric coiled-coil structures. An exception

was HsCEP135-N 96–158, which was monomeric in reducing

buffer conditions; however, under non-reducing conditions,

HsCEP135-N 96–158 formed a stable coiled-coil dimer. This

result can be explained by the presence of a cysteine residue

at a heptad d core position in HsCEP135-N (Cys110), which

allows for the formation of a disulfide bridge in the context of

a two-stranded parallel and in register coiled-coil structure

(Chernyatina and Strelkov, 2012). This analysis shows that all

HsCEP135-N fragments produced preserved the two-stranded

coiled-coil structure of the full-length protein under appropriate

buffer conditions.

Next, the microtubule-binding activities of the dimeric

HsCEP135-N fragments were tested using microtubule pelleting

assays. As summarized in Table 1 and shown in Figure 6A, the

twominimal HsCEP135-N fragments 1–108 and 96–158 retained

the ability to pellet together with microtubules. This observation

suggests that a microtubule-binding site is located between

residues 96 and 108. Notably, this segment coincides with the

positively charged surface patch 2 identified in our atomic

HsCEP135-N model (Figure 5E). It is well known that clusters

of basic amino acids of microtubule-binding domains are

frequently implicated in mediating interactions with the nega-

tively charged outer surface of microtubules (Ciferri et al.,

2008; Fourniol et al., 2010; Maurer et al., 2012). We thus tested

the functional relevance of selected basic residues in this re-

gion. Inspection of the HsCEP135-N 82–144 crystal structure

revealed three lysine residues, K101, K104, and K108, which

are present in the microtubule-binding region 96–108 (Figures

6B and 6C) and which are responsible for the high positive

electrostatic surface potential of patch 2 (Figures 5E and 6C).

To test the relevance of these three lysine residues we simulta-

neously mutated them to alanine in HsCEP135-N 96–158

(HsCEP135-N 96–158 3xK), HsCEP135-N 68–158 (HsCEP135

68–158 3xK), HsCEP135-N 1–108 (HsCEP135 1–108 3xK), and

HsCEP135-N (HsCEP135-N 3xK). Analysis by CD and SEC-

MALS demonstrated that all four triple mutants maintained

dimeric coiled-coil structures in solution (Figure S4 and Table 1;

HsCEP135-N 96–158 3xK was assessed under non-reducing

buffer conditions).

The microtubule-binding activities of the various HsCEP135-N

mutants were assessed by microtubule pelleting assays. In

contrast to wild-type, HsCEP135-N 96–158 3xK did not pellet

together with microtubules (Figure 6A), suggesting that residues

K101, K104, and K108 are important for microtubule binding

of this HsCEP135-N fragment. HsCEP135-N 68–158 3xK and

HsCEP135-N 1–108 3xK retained some microtubule-binding

activity as indicated by the weaker bands in the corresponding

pellet fractions (Figure 6A). Intriguingly, HsCEP135-N 3xK still

pelleted together with microtubules, suggesting that this mutant

retained the capacity to somehow interact with microtubules as

tested in this assay (Figure 6A).

To investigate these observations further, we conducted

immunofluorescence experiments of microtubules that were

mixed with either HsCEP135-N 3xK or HsCEP135 96–158 3xK

Figure 2. Cryo-EM Analysis of Assemblies Formed between Microtubules and HsCEP135-N

(A and B) Cryo-EM micrograph showing decoration of Taxol-stabilized microtubules (MT) incubated without (A) and with (B) HsCEP135-N. Scale bars, 50 nm.

(C and D) Different cryo-EM tomograms of Taxol-stabilized MTs incubated with HsCEP135-N (D, left) and corresponding analysis of the intensity distribution

along the outer microtubule edge (D, right, dashed rectangle). a.u., arbitrary units. Scale bars, 50 and 10 nm for (C) and (D), respectively.

(E–G) Cryo-EMmicrographs of higher-order tubulin assemblies obtained by co-polymerizing tubulin and HsCEP135-N. Apparent aremicrotubules bridged with a

protofilament (E) or with another microtubule (F and G, red arrowheads). Scale bar, 40 nm. See also Figure S1.

Table 2. X-Ray Data Collection, Phasing, and Refinement

Statistics

HsCEP135 82–144 CrBld10 1–70

PDB: 5FCN PDB: 5FCM

Data Collection

Space group I41 22 I41 22

Cell dimensions

a, b, c (Å) 78.85, 78.85,

95.92

92.74, 92.74,

164.07

a, b, g 90, 90, 90 90, 90, 90

Wavelength 1.00 2.0664

Resolution (Å) 39.42–1.8

(1.864–1.8)

47.11–2.229

(2.309–2.229)

Rmerge 0.04226 (0.4213) 0.1071 (2.16)

I/sI 18.71 (3.49) 50.27 (1.11)

Completeness (%) 99.00 (99.0) 100.00 (97.00)

Redundancy 4.8 (5.0) 103.5 (14.9)

Refinement

Resolution (Å) 39.42–1.8 (1.864–1.8) 47.11–2.229

(2.309–2.229)

No. of reflections 14,194 (1,393) 17,800 (1,694)

Rwork/Rfree 0.2169/0.2394

(0.3052/0.3524)

0.2142/0.2363

(0.4435/0.4213)

No. of atoms 1,058 2,150

Protein 913 2091

Ligand/ion 0 33

Water 145 26

B factors

Protein 37.07 64.17

Ligand/ion 72.70

Water 36.90 56.34

RMSD

Bond lengths (Å) 0.002 0.003

Bond angles (�) 0.37 0.56

Values in parentheses refer to the highest-resolution shell.
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(i.e., two mutants showing either binding or no binding in pellet-

ing assays) or with their respective wild-type variants, before be-

ing spun onto coverslips and stained with antibodies against

a-tubulin and HsCEP135-N. As shown in Figure 7A, microtu-

bules did not significantly pellet on their own in this assay; how-

ever, in the presence of wild-type HsCEP135-N, crosslinked and

bundled microtubules were present on the coverslip (Figure 7B).

This effect is reminiscent of classical microtubule-stabilizing

proteins (Lewis et al., 1989; Kanai et al., 1992) or of proteins

that stabilize microtubules by inducing bundling upon overex-

pression (Hoogenraad et al., 2000; Bu and Su, 2003), suggesting

that HsCEP135-N has a stabilizing effect on microtubules

in vitro. By contrast, microtubules, while present, were much

less crosslinked/bundled with one another in the presence

of HsCEP135-N 3xK (Figure 7C). Similar experiments carried

out with the HsCEP135-N 96–158 variant established that,

A

B

Figure 3. Crystal Structures of CrBld10p-N

1–70 and HsCEP135-N 82–144

(A) Crystal structures of the two CrBld10p-N 1–70

dimers found in the asymmetric unit of the crystal

and aligned vertically for side-to-side comparison.

(B) Crystal structures of the single HsCEP135-N

82–144 dimer present in the asymmetric unit of the

crystal. The corresponding sequence and struc-

ture-based secondary structure assignments are

shown below the structures. Residues occupying

heptad a and d core positions that pack in a

knobs-into-holes fashion are shown in green and

orange sticks representation, respectively.

See also Figure S2.

whereas the wild-type fragment inter-

acted with microtubules, no microtubules

were spun onto the coverslip in the

presence of HsCEP135-N 96–158 3xK

(Figure 7D; note that the HsCEP135-N

antibodies do not recognize the

HsCEP135-N 96–158 fragment). These

results are fully consistent with the ones

obtained with the microtubule pelleting

assay (Figure 6A) and concur to establish

that residues K101, K104, and K108 are

critical for efficient microtubule crosslink-

ing/bundling by HsCEP135-N.

Collectively, these results narrow

down a major microtubule-binding site

in HsCEP135-N to a 13 amino acid region

(segment 96–108). They further identify

three surface-exposed lysine residues

in this segment, which confer the micro-

tubule crosslinking/bundling activity of

the HsCEP135-N in vitro; however, they

also indicate that additional elements

flanking segment 96–108 contribute to

the overall microtubule-binding affinity

of HsCEP135-N. Based on our current

mutagenesis data, we suspect that such

elements are likely to be present on the

N-terminal side of segment 96–108, since

the mutant HsCEP135-N 96–158 3xK failed to interact with mi-

crotubules in pelleting assays. Thus, it is likely that the dimeric

structure in combination with multiple microtubule-binding sites

per monomer is the source of the microtubule crosslinking/

bundling activity of HsCEP135-N.

Conclusions

There is a general agreement that CEP135/Bld10p promotes

the assembly and stability of the centriolar microtubule wall

and hence of the entire centriole organelle from algae to hu-

mans. However, in the absence of structural information prior

to this work, how this protein family exerts this role at a mech-

anistic level has remained elusive. Here, by combining struc-

tural, biophysical, and biochemical approaches we have char-

acterized in detail the structure of the N-terminal domain of

human CEP135/Bld10p in vitro. We found that HsCEP135-N
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forms a very stable, parallel, two-stranded coiled-coil structure.

Our results further suggest that the �30 N-terminal residues of

HsCEP135-N are possibly disordered in solution. Interestingly,

these residues belong to an �40 amino acid stretch that is the

most conserved region among the members of the CEP135/

Bld10p family of proteins (Carvalho-Santos et al., 2010). The

A B

C D

Figure 4. SAXS Analysis of CrBld10p-N 1–70 and HsCEP135-N

(A) Raw SAXS data of CrBld10p-N 1–70 recorded at a protein concentration of 2.5 (red profile) and 5 mg/ml (blue profile). The black profile corresponds to the

merged data that were used for further processing.

(B) Distance distribution functions calculated from the experimental SAXS data (black profile) and from the four possible homo-dimeric CrBld10p-N 1–70

configurations (blue, red, green, and orange profiles) modeled from the four monomer structures present in the asymmetric unit of the crystal (Figure 3A).

(C) Raw SAXS data of His-HsCEP135-N recorded at 0.625 (gray profile), 1.25 (red profile), and 2.5 mg/ml (blue profile). The black profile corresponds to the

merged data that were used for further processing.

(D) Distance distribution function calculated from the experimental SAXS data of His-HsCEP135-N. Error bars are depicted as gray vertical lines.

See also Figure S3.

Table 3. SAXS Data

Protein Construct

Concentration

(mg/ml) RG (Å) Dmax (Å) Calculated MW (kDa)

Determined MW (kDa)

by SAXS

Oligomerization

State

HsCEP135 His-tagged

1–158

2.5 60.2 170–202 20.03 37.4a dimer

HsCEP135 His-tagged

1–158

1.25 60.4 180–208 20.03 41.4a dimer

HsCEP135 His-tagged

1–158

0.62 60.4 180–210 20.03 42.3a dimer

HsCEP135 His-tagged

1–158

average 20.03 24.1b

CrBld10 1–70 5 24.7 70–80 7.95 16.9a dimer

CrBld10 1–70 2.5 24.1 75–85 7.95 17.1a dimer

CrBld10 1–70 average 7.95 23.0b

RG, radius of gyration.
aDetermined using the Rambo-Tainer method (Rambo and Tainer, 2013).
bDetermined using BSA as a standard.
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present data do not reveal the function of this most N-ter-

minal segment; due to its high conservation across evolution,

we expect that this part of CEP135/Bld10p may represent

a binding site for centriolar protein partner(s) that awaits

identification.

It has been recently reported that there is a short human

CEP135/Bld10p splice isoform (dubbed CEP135mini) comprising

the first 249 N-terminal residues of HsCEP135, plus 16 amino

acids that differ in sequence from the full-length protein (Dahl

et al., 2015). This shorter HsCEP135 variant negatively regulates

centriole assembly by inhibiting the activity of the full-length pro-

tein, presumably by preventing it from interacting with centriolar

binding partners such as HsSAS-6 (Dahl et al., 2015). Notably,

our HsCEP135-N atomic model accounts for the first approxi-

mately two-thirds of CEP135mini. It is well established that

coiled-coil proteins can readily exchange their chains (Lehrer

et al., 1989). One possibility to explain the inhibitory effect of

CEP135mini is thus that it forms heterodimers with HsCEP135

and in this way negatively regulates the activity of the full-length

protein.

A B

C
D

E

Figure 5. Atomic Model of HsCEP135-N

(A) Root-mean-square deviation (RMSD) of Ca atoms of HsCEP135-N over the molecular dynamics simulation trajectory. Only residues 82–133 were used for the

calculation as the N and C terminus of HsCEP135-N are flexible.

(B) Simulated structure of HsCEP135-N with the Pro70 residue highlighted (magenta). Pro70 introduces a kink in the structure consistent with the ab initio SAXS

envelope. A representative conformation from the largest cluster is shown.

(C) Distance distribution function calculated from the experimental SAXS data of His-HsCEP135-N (black profile) and from the atomic model of HsCEP135-N

(blue profile) that was derived by modeling and molecular dynamics simulations.

(D) Overlay of the atomic model of HsCEP135-N from the modeling with the best His-HsCEP135-N DAMMIN envelope (Figure S3E).

(E) Surface view of the HsCEP135-N model, color-coded with the electrostatic surface potential calculated at pH 6.8 (from �10 to +10 kBT; red and blue depict

negative and positive electrostatic potentials, respectively). Regions of positive electrostatic potential are indicated and numbered with 1, 2, and 3.

See also Figure S3.
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Our study demonstrates that the N-terminal part of HsCEP135

binds tubulin, straight and curved protofilaments, and microtu-

bules in vitro; to the best of our knowledge, this is the first

demonstration that a coiled-coil domain can bind different

types of tubulin assemblies. Our results further reveal that

HsCEP135-N can crosslink/bundle and thus stabilize microtu-

bules, which can be explained by the homo-dimeric structure

of HsCEP135-N harboring multiple microtubule-binding sites.

The capacity of HsCEP135-N to simultaneously bind two or

more microtubules could contribute to the formation of microtu-

bule triplets or else to linking neighboring triplets within the cen-

triolar microtubule wall. In this context, it has been reported that

HsCEP135 binds CPAP (Lin et al., 2013), an essential centriolar

protein that interacts with tubulin and the g-tubulin complex,

and which is crucially involved in centriole biogenesis (Hung

et al., 2000; Kohlmaier et al., 2009; Schmidt et al., 2009; Tang

et al., 2009). A next goal will be to define how full-length

HsCEP135 is spatially organized in the lumen of centrioles and

how and to what extent its N-terminal domain collaborates

with additional protein partners to control the assembly and sta-

bility of the centriolar microtubule wall.

EXPERIMENTAL PROCEDURES

Protein Preparation and Biophysical Characterization

Standard protein production in bacteria and peptide synthesis is described in

the Supplemental Information. For CD spectroscopy, protein samples were

diluted to a final concentration of 10 or 20 mM in PBS (pH 7.5), supplemented

with 300 mM NaCl. For measurements under reducing conditions, 2 mM

tris(2-carboxyethy1)phosphine or 2 mM DTT were added to the protein sam-

ples. Far-UV CD spectra recorded at 4�C and thermal unfolding profiles re-

corded at 222 nm were obtained on a Chirascan spectrophotometer (Applied

Photophysics) equipped with a temperature control unit and sample tempera-

ture sensors. SEC-MALS experiments were performed in 20 mM Tris-HCl

(pH 7.5), supplemented with 150 mM NaCl and 1 mM DTT using an S-200

10/30 analytical SEC column connected inline to miniDAWN TREOS light scat-

tering and Optilab T-rEX refractive index detectors (Wyatt Technology).

Microtubule Pelleting Assay and Immunofluorescence Analysis

Standard microtubule pelleting assays were performed as previously

described (Campbell and Slep, 2011). See also Supplemental Information.

For immunofluorescence analysis, 10 mM Taxol-stabilized microtubules were

mixed with an equimolar amount of HsCEP135-N variants and spun down

on a coverslip for 10 min at 10,000 3 g. Samples were then fixed in ice-cold

methanol for 5min followed by a wash in PBS and incubation with blocking so-

lution (1%, w/v, BSA in PBS, 0.5% Tween 20 [PBT]) for 30 min. Primary and

secondary antibodies were diluted in PBT as follows: mouse anti-a-tubulin

(clone DM1A; Sigma-Aldrich): 1/1,000; rabbit anti-HsCEP135 1–158 (Meritxell

Orpinell and P.G., unpublished data): 1/500; goat anti-rabbit Alexa Fluor 488

and goat anti-mouse Alexa Fluor 568 (both Life Technologies): both 1/1,000.

Primary antibodies were incubated at 4�C overnight and secondary antibodies

at room temperature for 1 hr, and the slides were washed with PBT. All images

were processed with ImageJ (Schneider et al., 2012).

Electron Microscopy

Specimens were prepared by incubating Taxol-stabilized microtubules (20 ml

of 10 mM tubulin in BRB80, prepared similarly as for the microtubule pelleting

assay) with an equimolar amount of HsCEP135-N variants. Then, 2 ml of

a 100 mM solution of soluble tubulin was added to the mix after 5 min of

A

B

C

Figure 6. Identification of aMicrotubule-BindingSite inHsCEP135-N

(A) Microtubule pelleting assays for the indicated HsCEP135-N fragments and

mutants. Shown are relevant areas of Coomassie-stained SDS-PAGE gels.

(B) Close-up view of the microtubule-binding site in the crystal structure

of HsCEP135-N 82–144 in cartoon representation. Residues K101, K104,

and K108 that were simultaneously mutated are shown in sticks representa-

tion. The 2Fo � Fc electron density map (blue mesh) contoured at 1s is su-

perimposed onto the structure.

(C) Surface view of HsCEP135-N 82–144 color-coded with the electrostatic

surface potential calculated at pH 6.8 (from �10 to +10 kBT; red and blue

depict negative and positive electrostatic potentials, respectively).

See also Figure S4.
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incubation to prevent formation of microtubule bundles. Tubulin ring-like olig-

omers were formed by mixing 10 ml of 100 mM soluble tubulin with equimolar

amounts of HsCEP135-N 68–158. Bridged microtubules were obtained by

mixing and incubation of an equimolar amount of free tubulin with HsCEP135

68–158 for 30min followed by addition of 0.2mMTaxol final concentration and

further incubation for 1 hr at 37�C. Protein samples were adsorbed onto Lacey

carbon film grids (300 microMesh), blotted with a filter paper (Whatman) and

vitrified in liquid ethane using a homemade plunging apparatus. Samples

were imaged with an FEG Tecnai F 20 (FEI) transmission electron microscope

operated at 200 kV. For additional details, see Supplemental Information.

Figure 7. Immunofluorescence Microscopy of Microtubules in the Absence and Presence of HsCEP135-N Variants

(A–D) Fluorescence images of microtubules pelleted alone or in the presence of indicated wild-type or mutant HsCEP135-N variants and revealed by immu-

nofluorescence microscopy with a-tubulin and HsCEP135 antibodies. Scale bars, 5 mm. Note that the HsCEP135-N antibodies do not recognize epitopes in the

96–158 region and are thus not shown in (D).
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Crystallization, X-Ray Data Collection, and Structure Solution

Standard crystallization and X-ray data collection is described in the

Supplemental Information. All datasets were reduced, scaled, and

merged using XDS, XSCALE, and XDSCONV (Kabsch, 2010a, 2010b).

For CrBld10p 1–70, phases were obtained by sulfur SAD phasing us-

ing SHELX via the HKL2MAP interface (Pape and Schneider, 2004;

Thorn and Sheldrick, 2013). Automatic model building was done with

BUCCANEER (Cowtan, 2012). Refinement was performed by alternating

rounds of model building using the model building program COOT (Emsley

et al., 2010) and refinement with Phenix.refine from the PHENIX suite

(Adams et al., 2010).

For HsCEP135-N 82–144, the phase problem was solved by molecular

replacement using the coiled-coil structure of GCN4 (PDB: 4GKW) as a search

model. After obtaining an initial PHASER (McCoy et al., 2007) solution, the

model was first improved manually based on the electron density using

COOT (Emsley et al., 2010), then chain traced with SHELXE (Thorn and Shel-

drick, 2013) and built with BUCCANEER (Cowtan, 2012). Refinement was per-

formed as for CrBld10p 1–70. See Table 2 for all data collection and refinement

statistics.

SAXS Measurements

SAXS measurements were performed at the cSAXS (X12SA) beamline at the

Swiss Light Source (Paul Scherrer Institut) and at the BM29 bio-SAXS beam-

line at the European Synchrotron Radiation Facility (Pernot et al., 2013) at 10�C

and 20�C, respectively. All measurements were taken at 1 Å wavelength. The

q value is defined as 4p 3 sinq/l, where 2q is the scattering angle.

Prior to the measurements, all samples were either spun down or

filtered to remove possible aggregates. Concentrations ranging from 0.3

to 10 mg/ml for His-HsCEP135-N and from 1.25 to 5 mg/ml for CrBld10p

1–70 were measured. Data were analyzed in parallel using the ATSAS soft-

ware suite (Petoukhov et al., 2012) and using an in house software package.

Merging and cutting of the data was performed with PRIMUS (Konarev et al.,

2003). The distance distribution functions were calculated using GNOM

(Svergun, 1992) and were used as input for the DAMMIF/DAMMIN ab initio

shape reconstruction (Franke and Svergun, 2009). Calculated distance distri-

bution functions were generated with GNOM from simulated scattering data

that were computed from atomic models with CRYSOL (Svergun et al.,

1995).

Molecular Modeling and Molecular Dynamics Simulation

An atomicmodel of the HsCEP135-Nwas built usingModeller 9v14 (Webb and

Sali, 2014) using our crystal structures of CrBld10p-N 1–70 and HsCEP135-N

82–144. Missing residues 71–81 and 145–158 were modeled in an a-helical

configuration by introducing restraints on symmetry and secondary structure,

as the protein forms a homo-dimeric coiled-coil structure. A set of 50 models

were generated and evaluated using the discrete optimized protein energy

(DOPE) values. The model with the best DOPE value was then further energy

minimized and subjected to molecular dynamics simulations.

Themodel was first solvated in water and the charge of the systemwas then

neutralized by adding 12 Cl� ions. The final system comprised 450,890 atoms

(1 HsCEP135-N, 148,246 waters, and 418 K+ and 430 Cl� ions). The complete

system was first equilibrated at 310 K and 1 atm pressure for 24 ns and simu-

lated for an additional 72 ns. All the simulations were performed using the

CHARMM force field (Mackerell, 2004) in the NAMD2.10 package (Phillips

et al., 2005). Trajectories were visualized using VMD (Humphrey et al., 1996)

and clustering based on root-mean-square deviation was performed. A repre-

sentative conformation from the largest cluster was used for figure preparation

and comparison with the SAXS data. The theoretical scattering curve of the

generated model was computed and compared using the program CRYSOL

(Svergun et al., 1995) using the default parameters. The model was aligned

with the SAXS envelope of HsCEP135-N 1–158 via SUPCOMB (Kozin and

Svergun, 2001).

ACCESSION NUMBERS

Coordinates have been deposited at the PDB under the following accession

numbers: HsCEP135-N 82–144 (PDB: 5FCN) and Bld10p-N 1–70 (PDB:

5FCM).
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