
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

UVM methodology based functional Verification of
SPI Protocol
To cite this article: Aman Kulkarni and S M Sakthivel 2020 J. Phys.: Conf. Ser. 1716 012035

View the article online for updates and enhancements.

Recent citations

B. Priyanka et al-

This content was downloaded from IP address 106.195.40.208 on 06/08/2021 at 07:49

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

1

UVM methodology based functional Verification of SPI

Protocol

Aman Kulkarni
1
, S M Sakthivel

2

1,2
School of Electronics Engineering, Vellore Institute of Technology, Chennai, India

Email:
1
Aman.kulkarni55@gmail.com,

2
sakthivel.sm@vit.ac.in

Abstract. The scalability and complexity nature of the integrated circuit design makes the

verification process more complicated and time-consuming. Therefore, in the present modern-

day SOC’s there is a strong need for verification architectures with increased reusability and

easy accessibility. The UVM methodology-based verification architecture with reusable

components is one of the widely accepted test bench architectures for carrying out such

functional verification. This paper presents a UVM methodology based functional verification

of the SPI protocol core with a dedicated architecture. First the SPI core is modeled using

Verilog RTL. Then using the reusable components in UVM + System Verilog environment, the

SPI core is verified under two modes such as i) SPI communication with wishbone interface

and ii) SPI Master-Slave communication.

1. Introduction

Most of the SOC consists of many peripherals such as analog to digital converters, registers,

memories, digital to analog converters, etc. Therefore, there is a need for transmission and reception of

data among the several connected peripherals inside the SOC. Serial peripheral interface (SPI) is one

of the most commonly used serial protocols for both inter-chip and intrachip for low/medium speed

data-stream transfers. It is used to communicate between a processor and other devices like external

EEPROMs, DACs, ADCs, etc. [1]. In the world of communication protocols, SPI is often considered

as “little” communication protocol. It is important not to forget the purpose of each protocol. Ethernet,

USB, and SATA are meant for “outside the box communications” and data exchanges between whole
systems while SPI is aptly suited for communication between integrated circuits for low/medium data

transfer speed with on-board peripherals [2], [3]. In SPI the data exchange takes place between the

master and the slave device [4]. During the case of a device transmitting a data, the incoming data

must be read before an attempt to transmit again. An exchange of data always takes place between the

devices. In SPI protocol, a device cannot be just a transmitter only device or a receiver only device [3].

The master device controls the clock line SCK and the data exchange between the devices are

controlled by SCK clock line as shown in Figure 1.

 In this research work, the entire architecture is modeled using the Universal Verification

Methodology (UVM) Class Library which provides the building blocks needed to develop reusable

verification components and test environments [5,6]. Further, the rest of the paper is organized as

follows: section 2, presents a discussion on SPI protocol overview and its working. Section 3 discusses

the Proposed Universal Verification Methodology followed in generating the testbench

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

2

Figure 1. Block diagram of the SPI Master and Slave

architecture for functional verification, following this the section-IV presents the registers used in the

SPI protocol. Finally, in section 5, the results and discussion of the implemented SPI protocol

verification methodology is presented.

2. SPI Protocol Overview

In this section, the SPI protocol architecture and its operation are explained. Then the working

principle of SPI in different modes of configuration and wishbone interface communication structure

are also elaborated.

2.1. Serial Peripheral Interface.

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by

Motorola that operates in full-duplex mode. Devices communicate in master/slave mode where the

master device initiates the data frame. Multiple slave devices are allowed with individual slave select

(chip select) lines. Sometimes SPI is called a "four-wire" serial bus, contrasting with three-, two-, and

one-wire serial buses. It is a synchronous serial data link that operates in full-duplex (signals carrying

data go in both directions simultaneously).

Figure 2. Data Shifting between SPI Master and Slave

 In SPI, if the communication is initialized, then the master configures the system clock to different

clock frequencies to connect with different slaves. According to the chip select bit and clock signal

values, the communication is established in synchronized mode between the components. For

establishing the synchronized communication, the shift register mode based data exchange action, as

shown in Figure 2, is carried out to establish the communication. In this configuration, the SPI shift

register configuration acts as a ring oscillator to configure the different operating frequencies. Thus by

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

3

this clock toggling mechanism and slave select option, the master communicates and transfers the data

with different slaves.

 During the master-slave communication, the SPI specifies four signals: clock (SCK1); master data

output, slave data input (SI1); master data input, slave data output (SO1); and chip select (CS) for

establishing the data connection between different slaves as shown in Figure 3. Here the SCK1 is

generated by the master and input to all slaves. SI1 carries data from master to slave. SO1 carries data

from slave back to the master. The SPI bus can operate with a single master device and with one or

more slave devices. If a single slave device is used, the SS pin may be fixed to logic low if the slave

permits it.

Figure 3. SPI single master communicating with multiple slaves

 The SPI bus can operate with a single master device and with one or more slave devices. If a single

slave device is used, the SS pin may be fixed to logic low if the slave permits it. From the above

diagram, we can justify that data can be passed from one master to multiple slaves depends on the

activation of the slave selection signal until that full-duplex communication is in existence. The master

generates slave select signals using general-purpose discrete input/output pins or other logic. A pair of

parameters called clock polarity (CPOL) and clock phase (CPHA) determines the edges of the clock

signal on which the data are driven and sampled. Each of the two parameters has two possible states,

which allows for four possible combinations, all of which are incompatible with one another.

 Similar to the SPI master-slave communication, the SPI establishes the data transfer between

processor using the wishbone interface called as ITNERCON. In this data communication the

connection and data transfer ins established using the i/o ports of the wishbone and with both master &

slave. During this communication, the Wishbone-SPI uses handshake protocol, arbitration strategies to

avoid contention-free transfer between the bus and the linked processor.

 During the data transmission, the SPI bus interface involves our logic signals lines, namely Master

Out Slave In (MOSI), Master in Slave Out (MISO), Serial Clock (SCLK) and Slave Select (SS).

Master Out Slave In (MOSI) for establishing a synchronized transfer between the master and slave. It

is also responsible for the transmission of data in uni/bi-direction from master to slave. The four

signals are as follows:

 MISO - Master in Slave out.

 MOSI – Master out Slave in

 SS- Slave Select

 SCLK- Serial Clock

 The operation of the respective ports is given as follows:

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

4

 Master Out Slave In (MOSI) - It is responsible for the transmission of data in one direction

from master to slave.

 Master in Slave Out (MISO) - The MOSI is a unidirectional signal line and configured as

input signal line in a master device and as an output signal line in a slave device.

 Slave Select (SS) - The slave select signal is used as a chip-select line to select the slave

device. It is an active low signal and must stay low for the duration of the transaction.

 Serial Clock (SCLK) - The serial clock line is used to synchronize data transfer between both

output MOSI and input MISO signal lines. Further during the data transmission, the SPI

master and slave are configured accordingly then with respect to the data configuration and

control signals, the transfer is initialized in 8, 16 and 32 bits wide.

3. Proposed Verification Environment of SPI Protocol

In the proposed verification environment of the SPI protocol, first, the SPI core is modelled using the

Verilog RTL code. Then the respective test bench reusable components are generated using the UVM

codes based on the verification test scenarios [7-9]. The constructed verification environment of the

SPI protocol is shown in Figure 4. The proposed UVM methodology-based verification environment

consists of the following components as UVM_TEST, UVM_Environment, UVM_Agent,

UVM_Generator, UVM_Driver, UVM_Monitor, UVM_Scoreboard, UVM_Checker, and Interface.

Figure 4. Proposed UVM methodology-based Verification Architecture of SPI protocol

 A brief description of all the testbench components is given below:

 UVM TEST is the topmost class. It is responsible for configuring the testbench. Secondly, to

initiate the test bench components construction process by building the next level down in the

hierarchy. Third is to launch the stimulus by starting the sequence.

 UVM ENV Or Environment is a container component for grouping higher-level components

like agents and scoreboard.

 UVM Sequence defines the sequence in which the data items need to be generated and sent or

received to or from the driver.

 UVM Driver is responsible for driving the packet level data inside sequence_item into pin

level i.e., to the DUT.

 UVM Sequence defines the sequence in which the data items need to be generated and sent or

received to or from the driver.

 UVM Generator is responsible for generating the UVM sequence data packets or the

sequence_item to the driver or vice versa.

 UVM Monitor observes pin level activity on interface signals and converts into packet level,

which is sent to components such as scoreboards.

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

5

 UVM Scoreboard receives data items from monitors and compares with expected values. The

expected values can be either original reference values or generated from reference model.

 UVM Agent groups the uvm_components specific to an interface or protocol.

4. Registers used in the SPI protocol during data transmission
In the SPI protocol, master_slave core uses several registers as mentioned below for data transmission

with individual functionalities as stated below

 ASS: If this bit is set, ss_pad_o signals are generated automatically. This means that the slave

select signal, which is selected in SS register, is asserted by the SPI controller when transfer is

started by setting CTRL[GO_BSY] and is de-asserted after the transfer is finished.

 IE: If this bit is set, the interrupt output is set active after a transfer is finished. The Interrupt

signal is de-asserted after a Read or Write to any register.

 LSB Register: When LSB bit is set to 0x1, the least significant bit is sent first on the line (bit

TxL[0]), and the first bit received from the line will be put in the least significant bit position

in the Rx register (bit RxL[0]). When this bit is cleared, the MSB is transmitted /received first

(CHAR_LEN field in the CTRL register selects which bit in TxX/RxX register).

 Tx_NEG Register: The system programmer has the ability to control the format of the

asynchronous data communication exchange by using the Line Control Register (LCR). This

is an 8-bit register.

 Rx_NEG Register: When Rx_NEG bit is set, the miso_pad_i signal is received on the falling

edge of a sclk_pad_o clock signal, or otherwise, the miso_pad_i signal is received on the

rising edge of sclk_pad_o.

 GO_BSY Register: Writing 0x1 to this bit starts the transfer and remains set during the

transfer, automatically cleared after the transfer is finished. Writing 0x0 to this bit has no

effect.

 CHAR_LEN Register: This field specifies the number of bits to be transmitted in one transfer.

Can send up to 64 bits in one transfer.

Figure 5. Control status register format used in the communication of SPI core for both master_slave

mode and wishbone interface interaction

 In the data transmission process, the SPI establishes the communication between the master &

slave and also with the wishbone interface with the help of the control and status register bit values

[10], as shown in Figure 5. Depending on the values in the status register, the corresponding

communication mode is checked and verified for each of the transactions in the SPI core. Thus, with

the help of the status and control register, the communication failure, bottlenecks and errors are

corrected automatically in the SPI communication.

5. Proposed Verification Environment of SPI Protocol

In this section, the simulation results and discussion of the proposed verification architectures are

discussed in detail. First, the SPI core and wishbone interface are modeled using the Verilog HDL.

Then the reusable verification testbench architecture is constructed using the UVM base class library

functions using system Verilog language. During the functional simulation, each UVM components

are registered with the UVM factory settings and executed in the predefined UVM phases. The

functional verification is carried out for the following two verification scenarios as: i) SPI

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

6

Master_Slave communication and ii) SPI_ Wishbone communication. For the respective test cases, the

test environment is configured and the sequence is generated by the UVM_Generator. The generated

sequence is driven by the UVM_Driver and the respective outputs are monitored and checked by

UVM_Monitor and UVM_Checker. The two respective functional simulations is carried out using the

opensource simulation environment called EDA playground. During the simulation in the open source

environment, the SPI modeled codes and UVM_testbench architecture are executed under UVM 1.2

library support using the tools Mentor_Questa and EP wave. The verification of the functionality for

the aforementioned respective test scenarios are carried out in such a way that the transmission is

occurring in posedge and reception is performed in negedege of the clock signal. Also, the individual

test case scenario is explained briefly as follows:

Figure 6. Functional simulation response of SPI Master_Slave communication

5.1. SPI Master-Slave communication

In this mode, the communication between the SPI master and slave is carried out in a synchronized

manner using the clock signal values. During the initial phase of the communication, the Master_Slave

control registered is configured accordingly, then with the value of the flag registers of transmission

and reception, the signal values are tracked. As the read and write operation is carried out in the same

buffer, the flag register for transmit and receive will have opposite data values for the corresponding

operation. in this data transaction, the master configures the divider register and slave select register

accordingly for the error-free communication. After checking the status register values, the control

signal values are asserted, thereby initializing the data transactions between SPI master and slave.

Thus, in the developed verification environment for every clock cycle, the generated data transactions

are verified & checked by driver, monitor and checker components. The sample functional simulation

response of the SPI Master_Slave communication is shown in the Figure 6.

5.2. Wishbone to SPI communication

In this mode of data transactions, the SPI initializes the read, write and reset operation on the bus

interface with respect to the wishbone protocol. During the data communication, the write data cycle

involves strobe, write enable and select signals to assert the WISHBONE to the corresponding

address. That is another word, the master asserts the slave with appropriate address and data at the

same time on the bus. Then the data transaction is identified by an acknowledgment from the

corresponding slave. Upon receiving the acknowledge single, the master frees the bus by suspending

the current signal operation in the clock cycle. Then in the next cycle, the terminated operation is

initialized and executed, thereby establishing the communication between wishbones to SPI in this

mode of operation.The sample simulated function output response of the WISHBONE to SPI

communication is shown in Figure 7.

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

7

Figure 7. Functional simulation response of WISHBONE -SPI communication

6. Conclusion

This research work presents a UVM methodology based functional verification of SPI protocol using

Mentor Questa and EP Wave in the EDA playground cloud. In the verification process, initially, the

SPI core protocol was modeled using Verilog HDL, then the verification environment is constructed

using the system Verilog based UVM 1.2 base class libraries. Then the functionality of the SPI is

verified for two test scenarios, such as SPI Master_Slave and WISHBONE_SPI communication. For

this verification, the reusable verification components are generated using UVM base class libraries

and the sequence input are generator using random transactions. The generated testbench enables the

verification and validation of the full-duplex data transfer between the master core and slave core for

various character lengths and data formats, respectively. During the two modes of verification, the

read & write functionalities are checked with respect to the posedge and negedge of the clock cycle for

every transaction simultaneously. Further, the proposed verification environment can also be used as

verification IP in SOC architecture for performing the functional verification.

References

[1] Ni W and Zhang J 2015 Research of reusability based on UVM verification IEEE 11th Int.

Conf. on ASIC pp 1–4.

[2] Rajashekar Reddy P, Sreekanth P and Arun Kumar K 2017 Serial peripheral interface-master

universal verification component using UVM Int., Journal of Advanced Scientific

Technologies in Engineering and Management Sciences 3 p 27.

[3] Prasad R and Rani C S 2016 UART IP core verification using UVM IRF Int. Conf.

[4] Aditya K, Sivakumar M, Noorbasha F and Thummalakunta P B 2018 Design and functional

verification of a SPI master slave core using system verilog Int. Journal of Computational

Engineering Research.

[5] Roopesh P D, Siddesha P K and Kavitha Narayan B M 2015 RTL design and verification of

spi master-slave using UVM Int. Journal of Advanced Research in Electronics and

Communication Engineering 4 p 4.

[6] Mahesh G and Sakthivel S M 2015 Verification of memory transactions in axi protocol using

system verilog approach Proc. Of Int. conf. on Communication and Signal Processing 0860-

0864

[7] Swetha S and Sakthivel S M 2018 Design and verification of AMBA AXI3 protocol Proc. of

Int. conf. on VLSI Design: Circuits, Systems and Applications Lecture Notes in Electrical

Engineering 247-259

[8] Shyam S and Sakthivel S M 2019 Implementation and verification of rgb to grayscale

National Science, Engineering and Technology Conference (NCSET) 2020
Journal of Physics: Conference Series 1716 (2021) 012035

IOP Publishing
doi:10.1088/1742-6596/1716/1/012035

8

converter ip using system verilog Int. Journal of Innovative Technology and Exploring

Engineering 8(7) 645-652

[9] Murali.M, Umadevi.S, Sakthivel.S.M 2017 Verififcation IP for AMBA AXI Protocol using

System Verilog, International Journal of Applied Engineering Research 12(17) 6534-6541

[10] Liu T and Wang Y 2011 IP design of universal multiple devices SPI interface Anti Counter

feiting, Security and Identification Int. Conf. on. IEEE pp. 169–172.

